Yıl: 2024 Cilt: 8 Sayı: 1 Sayfa Aralığı: 1 - 10 Metin Dili: İngilizce DOI: 10.26701/ems.1404959 İndeks Tarihi: 25-03-2024

Investigation of an energy pile application and its economic analysis

Öz:
In this study, the heating and cooling needs of an airplane hangar by integrating a heat pump system into bored piles were investigated. For this purpose, U-type pile heat exchangers were installed inside the piles. 600 bored piles were integrated with heat exchangers depending on the heating requirements of the hangar. Energy calculations were performed for a single pile, and the total amount of energy that could be extracted from the ground was determined. The main goal is to supply cooling and heating for the hangar throughout the year without the use of any additional conventional system. Thus, cost-analysis results for both the heat pump and traditional system using levelized cost method were presented. The study results showed that the annual operating cost (COM)PW, total operating cost (IOM)PW, equivalent annual operating cost (COM), and total annual cost (CT) for the present condition reduced by nearly 38.5%, 35%, 35%, and 34% against the conventional system, respectively. The simple payback period was calculated as 1.1 years. Finally, it was seen that using the energy piles can provide the heating and cooling requirements of the hangar throughout the year without any additional conventional system.
Anahtar Kelime: Heat pump energy piles pile heat exchanger renewable energy

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Olabi, A. G., Mahmoud, M., Obaideen, K., Sayed, E. T., Ramadan, M., & Abdelkareem, M. A. (2023). Ground source heat pumps: Recent progress, applications, challenges, barriers, and role in achieving sustainable development goals based on bibliometric analysis. Thermal Science and Engineering Progress, 101851.
  • [2] Shen, J., Zhou, C., Luo, Y., Tian, Z., Zhang, S., Fan, J., & Ling, Z. (2023). Comprehensive thermal performance analysis and optimization study on U-type deep borehole ground source heat pump systems based on a new analytical model. Energy, 274, 127367.
  • [3] Luo, J., Zhang, Q., Liang, C., Wang, H., & Ma, X. (2023). An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China. Renewable Energy.
  • [4] Li, H. X., Okolo, D. E., Tabadkani, A., Arnel, T., Zheng, D., & Shi, L. (2023). An integrated framework of ground source heat pump utilisation for high-performance buildings. Scientific Reports, 13(1), 371.
  • [5] Miglioli, A., Aste, N., Del Pero, C., & Leonforte, F. (2023). Photovoltaic-thermal solar-assisted heat pump systems for building applications: Integration and design methods. Energy and Built Environment, 4(1), 39-56.
  • [6] Chen, Y., Kong, G., Xu, X., Hu, S., & Yang, Q. (2023). Machine-learning-based performance prediction of the energy pile heat pump system. Journal of Building Engineering, 77, 107442.
  • [7] Mousa, M. M., Bayomy, A. M., & Saghir, M. Z. (2022). Long-term performance investigation of a GSHP with actual size energy pile with PCM. Applied Thermal Engineering, 210, 118381.
  • [8] Cui, Y., & Zhu, J. (2018). Year-round performance assessment of a ground source heat pump with multiple energy piles. Energy and Buildings, 158, 509-524.
  • [9] Carotenuto, A., Marotta, P., Massarotti, N., Mauro, A., & Normino, G. (2017). Energy piles for ground source heat pump applications: Comparison of heat transfer performance for different design and operating parameters. Applied Thermal Engineering, 124, 1492-1504.
  • [10] Fadejev, J., Simson, R., Kurnitski, J., & Haghighat, F. (2017). A review on energy piles design, sizing and modelling. Energy, 122, 390-407.
  • [11] Fadejev, J., & Kurnitski, J. (2015). Geothermal energy piles and boreholes design with heat pump in a whole building simulation software. Energy and buildings, 106, 23-34.
  • [12] Moon, C. E., & Choi, J. M. (2015). Heating performance characteristics of the ground source heat pump system with energy-piles and energy-slabs. Energy, 81, 27-32.
  • [13] Morrone, B., Coppola, G., & Raucci, V. (2014). Energy and economic savings using geothermal heat pumps in different climates. Energy Conversion and Management, 88, 189-198.
  • [14] Hamada, Y., Saitoh, H., Nakamura, M., Kubota, H., & Ochifuji, K. (2007). Field performance of an energy pile system for space heating. Energy and Buildings, 39(5), 517-524.
  • [15] Brandl, H. (2006). Energy foundations and other thermo-active ground structures. Géotechnique, 56(2), 81-122.
  • [16] Gao, J., Zhang, X., Liu, J., Li, K. S., & Yang, J. (2008). Thermal performance and ground temperature of vertical pile-foundation heat exchangers: A case study. Applied Thermal Engineering, 28(17-18), 2295-2304.
  • [17] Gao, J., Zhang, X., Liu, J., Li, K., & Yang, J. (2008). Numerical and experimental assessment of thermal performance of vertical energy piles: an application. Applied Energy, 85(10), 901-910.
  • [18] De Moel, M., Bach, P. M., Bouazza, A., Singh, R. M., & Sun, J. O. (2010). Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renewable and Sustainable Energy Reviews, 14(9), 2683-2696.
  • [19] Wood, C. J., Liu, H., & Riffat, S. B. (2010). An investigation of the heat pump performance and ground temperature of a piled foundation heat exchanger system for a residential building. Energy, 35(12), 4932-4940.
  • [20] Singh, R. M., Bouazza, A., Wang, B., Barry-Macaulay, D., Haberfield, C., Baycan, S., & Carden, Y. (2011). Geothermal Energy Pile: Thermal cum Static Load Testing.”. In Australian Geothermal Energy Conference (pp. 245-248).
  • [21] Cui, P., Li, X., Man, Y., & Fang, Z. (2011). Heat transfer analysis of pile geothermal heat exchangers with spiral coils. Applied Energy, 88(11), 4113-4119.
  • [22] Suryatriyastuti, M. E., Mroueh, H., & Burlon, S. (2012). Understanding the temperature-induced mechanical behaviour of energy pile foundations. Renewable and sustainable energy reviews, 16(5), 3344-3354.
  • [23] Amatya, B. L., Soga, K., Bourne-Webb, P. J., Amis, T., & Laloui, L. (2012). Thermo-mechanical behaviour of energy piles. Géotechnique, 62(6), 503-519.
  • [24] López-Querol, S., Peco, J., & Arias-Trujillo, J. (2014). Numerical modeling on vibroflotation soil improvement techniques using a densification constitutive law. Soil Dynamics and Earthquake Engineering, 65, 1-10.
  • [25] REHAU Polimeri Kimya Sanayi Anonim Şirketi, İstanbul, October 2012. https://www.rehau.com/tr-tr
  • [26] Zhang, H., Han, Z., Li, X., Ji, M., Zhang, X., Li, G., & Yang, L. (2021). Study on the influence of borehole spacing considering groundwater flow and freezing factors on the annual performance of the ground source heat pump. Applied Thermal Engineering, 182, 116042.
  • [27] Puttige, A. R., Andersson, S., Östin, R., & Olofsson, T. (2022). Modeling and optimization of hybrid ground source heat pump with district heating and cooling. Energy and Buildings, 264, 112065.
  • [28] Republic of Türkiye Ministry of Environment, Urbanization and Climate Change. General Technical Specifications for Mechanical Installation, Heat Pumps. (accessed date: 11 December 2023). https://webdosya.csb.gov.tr/db/yfk/icerikler//sartname-mgts-15-isi-pompalari-20201026120829.pdf
  • [29] Deltam Mühendislik ve Ticaret Ltd. Şti. Ümraniye, İstanbul. Isı Pompası Uygulamaları, 22 April 2013.
  • [30] Aybers, N., Şahin, B. (1995). Enerji Maliyeti. Yıldız Teknik Üniversitesi Yayınları, No. 299.
  • [31] Kıncay, O., Akbulut, U., Ağustos, H., Açıkgöz, Ö., & Çetin, Ö. (2008). Güneş Enerjisi ve Toprak Kaynaklı Isı Pompası Sistemlerinin Konvansiyonel Sistemlerle Ekonomik Olarak Karşılaştırılması. Tesisat Mühendisliği, 106.
  • [32] Turkish Electricity Distribution Corporation. (accessed date: 17 June 2013). https://www.tedas.gov.tr/tr/1
  • [33] Istanbul Gas Distribution Corporation (accessed date: 17 June 2013). https://www.igdas.istanbul/
APA Coşman S, kıncay o (2024). Investigation of an energy pile application and its economic analysis. , 1 - 10. 10.26701/ems.1404959
Chicago Coşman Sertaç,kıncay olcay Investigation of an energy pile application and its economic analysis. (2024): 1 - 10. 10.26701/ems.1404959
MLA Coşman Sertaç,kıncay olcay Investigation of an energy pile application and its economic analysis. , 2024, ss.1 - 10. 10.26701/ems.1404959
AMA Coşman S,kıncay o Investigation of an energy pile application and its economic analysis. . 2024; 1 - 10. 10.26701/ems.1404959
Vancouver Coşman S,kıncay o Investigation of an energy pile application and its economic analysis. . 2024; 1 - 10. 10.26701/ems.1404959
IEEE Coşman S,kıncay o "Investigation of an energy pile application and its economic analysis." , ss.1 - 10, 2024. 10.26701/ems.1404959
ISNAD Coşman, Sertaç - kıncay, olcay. "Investigation of an energy pile application and its economic analysis". (2024), 1-10. https://doi.org/10.26701/ems.1404959
APA Coşman S, kıncay o (2024). Investigation of an energy pile application and its economic analysis. European Mechanical Science, 8(1), 1 - 10. 10.26701/ems.1404959
Chicago Coşman Sertaç,kıncay olcay Investigation of an energy pile application and its economic analysis. European Mechanical Science 8, no.1 (2024): 1 - 10. 10.26701/ems.1404959
MLA Coşman Sertaç,kıncay olcay Investigation of an energy pile application and its economic analysis. European Mechanical Science, vol.8, no.1, 2024, ss.1 - 10. 10.26701/ems.1404959
AMA Coşman S,kıncay o Investigation of an energy pile application and its economic analysis. European Mechanical Science. 2024; 8(1): 1 - 10. 10.26701/ems.1404959
Vancouver Coşman S,kıncay o Investigation of an energy pile application and its economic analysis. European Mechanical Science. 2024; 8(1): 1 - 10. 10.26701/ems.1404959
IEEE Coşman S,kıncay o "Investigation of an energy pile application and its economic analysis." European Mechanical Science, 8, ss.1 - 10, 2024. 10.26701/ems.1404959
ISNAD Coşman, Sertaç - kıncay, olcay. "Investigation of an energy pile application and its economic analysis". European Mechanical Science 8/1 (2024), 1-10. https://doi.org/10.26701/ems.1404959