100 35

Proje Grubu: MFAG Sayfa Sayısı: 50 Proje No: 121F251 Proje Bitiş Tarihi: 15.10.2023 Metin Dili: Türkçe DOI: 121F251 İndeks Tarihi: 26-03-2024

Astronomi Için Antarktika'Da Yer Seçimi

Öz:
Antarktika, benzersiz pek çok özelliğe sahip bir kıta olup, dünya kıtaları arasında Avusturalya?dan %80 daha büyük olmasıyla altıncı en büyük kıta olma özelliğini taşır. Aynı zamanda yıllık yağış miktarının sadece ~3 mm/yıl olması nedeniyle en kurak kıta olarak bilinir ve sıcaklıkların -60 °C'ye kadar düştüğü dünyanın en soğuk yerlerinden biridir. Antarktika, kıtalar arasında ortalama yükseklik bakımından da zirvededir, 2300 metrelik bir ortalama yüksekliğe sahiptir ve en yüksek noktası, 4892 metrelik yüksekliğiyle Vinson Dağı'dır. Bu benzersiz koşullar, düşük nem, uzun karanlık geceler ve sert soğukla birleşerek astronomi için uygun bir ortam sağlar, bu da Antarktika'yı astronomi için kapsamlı araştırmaların yapılabileceği değerli bir yer haline getirir. Bu kıta üzerinde bir dizi önemli astronomi konulu araştırma projesi yürütülmüş veya hala devam etmektedir. Bu projeler arasında JACEE, BOOMERanG, IceCube, 10 Metre Güney Kutbu Teleskobu ve MITO gibi önemli çalışmalar bulunmaktadır. Bu çalışma, Antarktika'da astronomi kapsamlı araştırmalar için uygun yerlerin tespiti amacıyla astro-meteorolojik ve yükseklik verilerini içeren bir analiz sunmaktadır. Bu analiz, çeşitli senaryoları kapsayacak şekilde tasarlanmış ve Coğrafi Bilgi Sistemleri (CBS) kullanılarak gerçekleştirilmiştir. Bu araştırma, Antarktika'da astronomi için saha seçimi konusunda CBS tabanlı bir yaklaşımın uygulandığı ilk çalışmalardan birini temsil etmektedir. Çalışmada kullanılan yöntem, Çok Kriterli Karar Analizi (MCDA) olarak adlandırılan ve yüksek mekânsal çözünürlüğe (1 km) sahip güncel uydu ve model verilerinin yanı sıra en az 20 yıl süreli zaman serilerini kullanarak geliştirilmiştir. Bu yaklaşım, Antarktika'daki Astronomi Sitelerinin Uygunluk İndeksi (SIASA) adı verilen bir indeks oluşturulmasını sağlamıştır. SIASA, farklı senaryoları (optik ve kızılötesi bölgede çalışabilecek teleskoplar için uygun) hesaba katan ve farklı katmanlara ağırlık veren bir indeks olarak geliştirilmiştir. Araştırma sonucunda elde ettiğimiz sonuçlar aşağıda sunulmuştur. Antarktika, Dünya üzerindeki en açık gökyüzü değerlerine (340 gün) sahiptir. Yoğuşablir su buharı miktarı değerleri, dünyanın geri kalanından daha kuru (0.09 mm'ye kadar) olduğunu göstermektedir. Ortalama 2.300 metre yüksekliği ile Dünya üzerindeki en yüksek kıta olma özelliğine sahiptir. Rüzgâr profili Antarktika'nın istikrarlı atmosferini göstermektedir. Yaz aylarında PWV'deki artış gibi klasik mevsimsel meteorolojik değişiklikler Antarktika'da da gözlemlenmektedir. Astro-meteorolojik parametrelerin uzun vadeli eğilimleri araştırma istasyonlarında incelenmiş ve uzun vadeli etkiler gözlenmiştir. Çalışmamızda astro-meteorolojik parametrelerin korelasyonları da araştırma istasyonları için incelenmiş ve CC-DEM, DEM-PWV ve HVW-PWV katmanları arasında güçlü korelasyonlar bulunmuştur. SIASA serilerinin sonuçları incelendiğinde astronomi için uygun alanlar belirlenmiştir. SIASA serileri genel olarak birbirlerine yakın sonuçlar sunmaktadır. Bu alanlar Dome F'nin 800 km kuzeybatısında (12.26oE ve 74.71oS) başlar ve Dome C'ye kadar devam eder. Bu bölgede bulunan istasyonların almış olduğu uygunluk değerleri diğer istasyonlara göre daha yüksektir. Antarktika'da, Trans-Atlantik Dağları'nın doğu ve iç kısımları astronomi için elverişlidir. Buna karşılık, Antarktika'nın kıyı bölgeleri astronomi için uygun değildir. Dome A, Ridge A ve Dome F SIASA serilerinde en yüksek uygunluk değerlerine sahiptir. Diğer taraftan, lojistik açıdan uygun olan ve At nalı adasında bulunan Türk Antarktika Araştırma İstasyonu konumu gereği astronomi çalışmaları için uygun değildir. Bu bulgular, gelecekteki astronomi alanlarının planlanması açısından büyük bir öneme sahiptir. Antarktika'da yeni bir gözlemevi veya araştırma istasyonu kurmayı düşünen ülkeler, araştırma merkezleri ve üniversiteler için değerli bir referans kaynağı oluşturmaktadır.
Anahtar Kelime: Antarktika Astronomi Coğrafi Bilgi Sistemleri Yer seçimi Gözlemevleri Veri Analizi Büyük Veri

Site Selection for Astronomy in Antarctica

Öz:
Antarctica is the world's sixth largest continent, encompassing many distinctive attributes, and it is over 80% larger than Australia. It is famed for being the driest continent, with just ~3 mm/year of annual rainfall, and is notorious for being one of the coldest places on Earth, with temperatures plummeting as low as -60°C. Additionally, Antarctica takes the top spot among all the continents for its average altitude, sitting at approximately 2300 meters, and is dominated by Mount Vinson, towering at a prodigious height of 4892 meters. The distinctive conditions of low humidity, extended periods of darkness, and severe cold make Antarctica a conducive location for astronomical research, thereby rendering it a valuable site for extensive astronomical studies. Numerous noteworthy projects in this field are either currently being pursued or have already been executed on this continent, comprising crucial investigations like JACEE, BOOMERanG, IceCube, the 10 Metre South Pole Telescope, and MITO. This study analyzes astro-meteorological and elevation data to identify appropriate areas for astronomical exploration in Antarctica. The analysis covers various scenarios and implements Geographic Information Systems (GIS) technology. This research is among the first to utilize a GIS-based approach to choose observational sites for astronomy in Antarctica. The study's methodology, Multi-Criteria Decision Analysis (MCDA), was developed using current satellite and model data with high spatial resolution of 1 km and time series spanning at least two decades. This approach led to the creation of an index, the Index of Suitability of Astronomy Sites in Antarctica (SIASA). SIASA was created as an index considering several scenarios for telescopes functioning in the optical and infrared domains. The index also assigns significance to different tiers. The following report displays the outcomes of the study. Antarctica boasts the highest percentage of clear skies on Earth (340 days). The continent's levels of precipitable water vapor demonstrate its lower moisture levels compared to the rest of the world (up to 0.09 mm). Antarctica is also the planet's tallest landmass with an average altitude of 2,300 meters. The following report displays the outcomes of the study. Its steady atmosphere is reflected in its wind profile. In Antarctica, traditional seasonal meteorological shifts, which include increased PWV during the summer months, are also observed. Long-term trends of astro-meteorological parameters have been analyzed at research stations, and the resulting observations have revealed subsequent effects. In our study, we also examined correlations between astro-meteorological parameters at the research stations, and found strong correlations between the CC-DEM, DEM-PWV, and HVW-PWV layers. Our analysis of the SIASA series identified suitable areas for astronomy, given the generally close proximity of these series to one another. These areas begin 800 km northwest of Dome F (12.26o E and 74.71o S) and extend through to Dome C. The suitability values of the stations in this region surpass those of the other stations. In Antarctica, the eastern and inner segments of the Trans-Atlantic Mountains offer suitable conditions for astronomy. However, the coastal regions of Antarctica are unsuitable for astronomical purposes. Dome A, Ridge A, and Dome F are the most suitable sites within the SIASA series. The Turkish Antarctic Research Station located on Horseshoe Island is not viable for astronomy studies due to its location. These findings are crucial for future site planning and will serve as a valuable reference for countries, research centers, and universities interested in establishing new observatories or research stations in Antarctica.
Anahtar Kelime: Antarktika Astronomi Coğrafi Bilgi Sistemleri Yer seçimi Gözlemevleri Veri Analizi Büyük Veri

Erişim Türü: Erişime Açık
  • Aksaker, N., Yerli, S. K., Erdoğan, M. A., Erdi, E., Kaba, K., Ak, T., ... & Selam, S. O. (2015). Astronomical site selection for Turkey using GIS techniques. Experimental Astronomy, 39, 547-566.
  • Aksaker, N., Yerli, S. K., Erdoğan, M. A., Kurt, Z., Kaba, K., Bayazit, M.,... (2020). Global Site Selection for Astronomy. Monthly Notices of the Royal Astronomical Society, 493, 1204.
  • Argus, D. F., Blewitt, G., Peltier, W. R., & Kreemer, C. (2011). Rise of the Ellsworth mountains and parts of the East Antarctic coast observed with GPS. Geophysical Research Letters, 38(16).
  • Aristidi, E., Agabi, A., Fossat, E., Azouit, M., Martin, F., Sadibekova, T., ... & Ziad, A. (2005). Site testing in summer at Dome C, Antarctica. Astronomy & Astrophysics, 444, 651-659.
  • Aristidi, E., Fossat, E., Agabi, A., Mékarnia, D., Jeanneaux, F., Bondoux, E., ... & Trinquet, H. (2009). Dome C site testing: surface layer, free atmosphere seeing, and isoplanatic angle statistics. Astronomy & Astrophysics.
  • Ayuso, S., Blanco, J. J., Tejedor, J. I. G., Herrero, R. G., Vrublevskyy, I., Población, Ó. G., & Medina, J. (2021). MITO: a new directional muon telescope. Journal of Space Weather and Space Climate, 11, 13.
  • Badger, J., Hahmann, A., Larsén, X. G., Badger, M., Kelly, M., Olsen, B. T., & Mortensen, N. G. (2015). The Global Wind Atlas: An EUDP project carried out by DTU Wind Energy.
  • Bamber, J., & Gómez-Dans, J. (15 September 2005). The accuracy of digital elevation models of the Antarctic continent. Environmental Science Earth and Planetary Science Letters.
  • Borbas, E., & Menzel, P. (2017). MODIS atmosphere L2 atmosphere profile product. NASA MODIS Adaptive Processing System.
  • Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara, M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I. V., Grosvenor, D. P., Lachlan-Cope, T., & van Lipzig, N. P. M. (2012). Tropospheric clouds in Antarctica. Reviews of Geophysics, 50(RG1004).
  • Burton, M. G. (2010). Astronomy in Antarctica. The Astronomy and Astrophysics Review, 18, 417-469.
  • Burton, M. G., Zheng, J., Mould, J., Cooke, J., Ireland, M., Uddin, S. A., ... & Wang, L. (2016). Scientific goals of the kunlun infrared sky survey (kiss). Publications of the Astronomical Society of Australia, 33, e047.
  • Carlstrom, J. E., Ade, P. A., Aird, K. A., Benson, B. A., Bleem, L. E., Busetti, S., ... & Williamson, R. (2011). The 10 meter south pole telescope. Publications of the Astronomical Society of the Pacific, 123(903), 568.
  • Churchman, C. W., & Ackoff, R. L. (1954). An approximate measure of value. Journal of the Operations Research Society of America, 2(2), 172-187.
  • Conde, M., & Dyson, P. L. (1995). Thermospheric vertical winds above Mawson, Antarctica. Journal of Atmospheric and Terrestrial Physics, 57(6), 58-596.
  • Crill, B. P., Ade, P. A., Artusa, D. R., Bhatia, R. S., Bock, J. J., Boscaleri, A., ... & Turner, A. D. (2003). Boomerang: A balloon-borne millimeter-wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background. The Astrophysical Journal Supplement Series, 148(2), 527.
  • Crosta, X., Etourneau, J., Orme, L. C., Dalaiden, Q., Campagne, P., Swingedouw, D., ... & Ikehara, M. (2021). Multi-decadal trends in Antarctic sea-ice extent driven by ENSO– SAM over the last 2,000 years. Nature Geoscience, 14(3), 156-160.
  • Dong, X., Wang, Y., Hou, S., Ding, M., Yin, B., & Zhang, Y. (2020). Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology. Journal of Climate, Advance online publication.
  • Erasmus, D. A., & Peterson, R. (1997). The feasibility of forecasting cirrus cloud cover and water vapor above telescope sites in northern Chile. Publications of the Astronomical Society of the Pacific, 109(732), 208.
  • Gesch, D. B., Verdin, K. L., & Greenlee, S. K. (1999). New land surface digital elevation model covers the Earth. Eos, Transactions American Geophysical Union, 80(6), 69-70.
  • Giovanelli, R., Darling, J., Henderson, C., Hoffman, W., Barry, D., Cordes, J., ... & Stacey, G. (2001). The optical/infrared astronomical quality of high Atacama sites. II. Infrared characteristics. Publications of the Astronomical Society of the Pacific, 113(785), 803.
  • Gorodetskaya, I. V., Kneifel, S., Maahn, M., Van Tricht, K., Thiery, W., Schween, J. H., ... & Van Lipzig, N. P. M. (2015). Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. The Cryosphere, 9(1), 285-304.
  • Hellemeier, J. A., Yang, R., Sarazin, M., & Hickson, P. (2019). Weather at selected astronomical sites–an overview of five atmospheric parameters. Monthly Notices of the Royal Astronomical Society, 482(4), 4941-4950.
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
  • Hou, X., Hu, Y., Du, F., & diğerleri. (2023). Machine learning-based seeing estimation and prediction using multi-layer meteorological data at Dome A, Antarctica. Astronomy and Computing, 43, 100710.
  • Hund, A. J. (Ed.). (2014). Antarctica and the Arctic circle: a geographic encyclopedia of the earth's polar regions [2 volumes]. ABC-CLIO.
  • IceCube Collaboration. (2006). First year performance of the IceCube neutrino telescope. arXiv preprint astro-ph/0604450.
  • Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., ... & Watanabe, O. (2007). Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448(7156), 912-916.
  • Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989-3034.
  • Li, X., Wang, B., Qiu, B., & Wu, C. (2022). An all-sky camera image classification method using cloud cover features. Atmospheric Measurement Techniques, 15(11), 3629-3639.
  • Liu, H., Jezek, K. C., & Li, B. (1999). Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system- based approach. Journal of Geophysical Research, 104(B10), 23199-23213.
  • Liu, L. Y., Yao, Y. Q., Wang, Y. P., Ma, J. L., He, B. L., & Wang, H. S. (2010). Seeing measurements for the Guoshoujing Telescope (LAMOST) site with DIMM. Research in Astronomy and Astrophysics, 10(10), 1061.
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
  • Monteath, C. (1997). Hall & Ball: Kiwi Mountaineers: from Mount Cook to Everest. Cloudcap.
  • Otarola, A., De Breuck, C., Travouillon, T., Matsushita, S., Nyman, L. Å., Wootten, A., ... & Pérez-Beaupuits, J. P. (2019). Precipitable Water Vapor, Temperature, and Wind Statistics At Sites Suitable for mm and Submm Wavelength Astronomy in Northern Chile. Publications of the Astronomical Society of the Pacific, 131(998), 045001.
  • Parish, T. R., & Bromwich, D. H. (1998). A case study of Antarctic katabatic wind interaction with large-scale forcing. Monthly Weather Review, 126(1), 199-209.
  • Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347-352), 240-242.
  • Radionov, V. F., Lamakin, M. V., & Herber, A. (2002). Changes in the aerosol optical depth of the Antarctic atmosphere. Izvestiia Russian Academy Of Sciences Atmospheric And Oceanic Physics, 38(2), 179-183.
  • Racine, R. (2005). Altitude, elevation, and seeing. Publications of the Astronomical Society of the Pacific, 117(830), 401.
  • Saunders, W., Lawrence, J. S., Storey, J. W., Ashley, M. C., Kato, S., Minnis, P., ... & Kulesa, C. (2009). Where is the best site on Earth? Domes A, B, C, and F, and Ridges A and B. Publications of the Astronomical Society of the Pacific, 121(883), 976.
  • Sarazin, M., Graham, E., & Kurlandczyk, H. (2006). FriOWL: A Site Selection Tool for the European Extremely Large Telescope (E-ELT) Project. The Messenger, 125, 44.
  • Sims, G., Ashley, M. C. B., Cui, X., Everett, J. R., Feng, L., Gong, X., ... & Zhu, Z. (2012). Precipitable Water Vapor above Dome A, Antarctica, Determined from Diffuse Optical Sky Spectra. Publications of the Astronomical Society of the Pacific, 124, 74–83.
  • Shikhovtsev, A. Y., Bolbasova, L. A., Kovadlo, P. G., & Kiselev, A. V. (2020). Atmospheric parameters at the 6-m Big Telescope Alt-azimuthal site. Monthly Notices of the Royal Astronomical Society, 493(1), 723-729.
  • Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & García-Cascales, M. S. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making
  • (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544-556.
  • Spearman, C. (1961). The proof and measurement of association between two things.
  • Spinhirne, J. D., Palm, S. P., & Hart, W. D. (2005). Antarctica cloud cover for October 2003 from GLAS satellite lidar profiling. Geophysical Research Letters, 32, L22S05. https://doi.org/10.1029/2005GL023782.
  • Storey, J. W. V. (2007). Introduction to the Antarctic Plateau. Chinese Astronomy and Astrophysics, 31, 98–100.
  • Suparta, W., Abdul Rashid, Z. A., Mohd. Ali, M. A., Yatim, B., & Fraser, G. J. (2008). Observations of Antarctic precipitable water vapor and its response to solar activity based on GPS sensing. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1419-1447.
  • Suparta, W. (2010). Using a global positioning system to estimate precipitable water vapor in Antarctica. Polar Geography, 33(1-2), 63-79.
  • Tang, N. (Petra). (2010, Aralık). Astronomy within Antarctica: The Past and the Present Thomas, I. D., King, M. A., Clarke, P. J., & Penna, N. T. (2011). Precipitable water vapor estimates from homogeneously reprocessed GPS data: An intertechnique comparison in Antarctica. Journal of Geophysical Research, 116, D04107.
  • Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: Methods and applications. CRC Press.
  • Verlinden, K. L., Thompson, D. W., & Stephens, G. L. (2011). The three-dimensional distribution of clouds over the Southern Hemisphere high latitudes. Journal of Climate, 24(22), 5799-5811.
  • Weller, G. E. (1969). A meridional surface wind speed profile in MacRobertson Land, Antarctica. PAGEOPH, 77, 193–200.
  • Ye, H., Fetzer, E. J., Bromwich, D. H., Fishbein, E. F., Olsen, E. T., Granger, S. L., Lee, S.-Y., Chen, L., & Lambrigtsen, B. H. (2007). Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer. Geophysical Research Letters, 34, L19701.
  • Yuan, X., Hu, Y., Liu, Q., Shang, Z., Liu, L., Hu, Z., & Xu, J. (2014). Meteorological Data for the Astronomical Site at Dome A, Antarctica. Publications of the Astronomical Society of the Pacific, 126(943).
  • Ziad, A., Aristidi, E., Agabi, A., Borgnino, J., Martin, F., & Fossat, E. (2008). First statistics of the turbulence outer scale at Dome C. Astronomy & Astrophysics, 491, 917-921.
  • Aksaker, N., Yerli, S. K., Erdoğan, M. A., Erdi, E., Kaba, K., Ak, T., ... & Selam, S. O. (2015). Astronomical site selection for Turkey using GIS techniques. Experimental Astronomy, 39, 547-566. Aksaker, N., Yerli, S. K., Erdoğan, M. A., Kurt, Z., Kaba, K., Bayazit, M.,... (2020). Global Site Selection for Astronomy. Monthly Notices of the Royal Astronomical Society, 493, 1204. Argus, D. F., Blewitt, G., Peltier, W. R., & Kreemer, C. (2011). Rise of the Ellsworth mountains and parts of the East Antarctic coast observed with GPS. Geophysical Research Letters, 38(16). Aristidi, E., Agabi, A., Fossat, E., Azouit, M., Martin, F., Sadibekova, T., ... & Ziad, A. (2005). Site testing in summer at Dome C, Antarctica. Astronomy & Astrophysics, 444, 651-659. Aristidi, E., Fossat, E., Agabi, A., Mékarnia, D., Jeanneaux, F., Bondoux, E., ... & Trinquet, H. (2009). Dome C site testing: surface layer, free atmosphere seeing, and isoplanatic angle statistics. Astronomy & Astrophysics. Ayuso, S., Blanco, J. J., Tejedor, J. I. G., Herrero, R. G., Vrublevskyy, I., Población, Ó. G., & Medina, J. (2021). MITO: a new directional muon telescope. Journal of Space Weather and Space Climate, 11, 13. Badger, J., Hahmann, A., Larsén, X. G., Badger, M., Kelly, M., Olsen, B. T., & Mortensen, N. G. (2015). The Global Wind Atlas: An EUDP project carried out by DTU Wind Energy. Bamber, J., & Gómez-Dans, J. (15 September 2005). The accuracy of digital elevation models of the Antarctic continent. Environmental Science Earth and Planetary Science Letters. Borbas, E., & Menzel, P. (2017). MODIS atmosphere L2 atmosphere profile product. NASA MODIS Adaptive Processing System. Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara, M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I. V., Grosvenor, D. P., Lachlan Cope, T., & van Lipzig, N. P. M. (2012). Tropospheric clouds in Antarctica. Reviews of Geophysics, 50(RG1004). Burton, M. G. (2010). Astronomy in Antarctica. The Astronomy and Astrophysics Review, 18, 417-469. Burton, M. G., Zheng, J., Mould, J., Cooke, J., Ireland, M., Uddin, S. A., ... & Wang, L. (2016). Scientific goals of the kunlun infrared sky survey (kiss). Publications of the Astronomical Society of Australia, 33, e047. Carlstrom, J. E., Ade, P. A., Aird, K. A., Benson, B. A., Bleem, L. E., Busetti, S., ... & Williamson, R. (2011). The 10 meter south pole telescope. Publications of the Astronomical Society of the Pacific, 123(903), 568. Churchman, C. W., & Ackoff, R. L. (1954). An approximate measure of value. Journal of the Operations Research Society of America, 2(2), 172-187. Conde, M., & Dyson, P. L. (1995). Thermospheric vertical winds above Mawson, Antarctica. Journal of Atmospheric and Terrestrial Physics, 57(6), 58-596. Crill, B. P., Ade, P. A., Artusa, D. R., Bhatia, R. S., Bock, J. J., Boscaleri, A., ... & Turner, A. D. (2003). Boomerang: A balloon-borne millimeter-wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background. The Astrophysical Journal Supplement Series, 148(2), 527. Crosta, X., Etourneau, J., Orme, L. C., Dalaiden, Q., Campagne, P., Swingedouw, D., ... & Ikehara, M. (2021). Multi-decadal trends in Antarctic sea-ice extent driven by ENSO–SAM over the last 2,000 years. Nature Geoscience, 14(3), 156-160. Dong, X., Wang, Y., Hou, S., Ding, M., Yin, B., & Zhang, Y. (2020). Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology. Journal of Climate, Advance online publication. Erasmus, D. A., & Peterson, R. (1997). The feasibility of forecasting cirrus cloud cover and water vapor above telescope sites in northern Chile. Publications of the Astronomical Society of the Pacific, 109(732), 208. Gesch, D. B., Verdin, K. L., & Greenlee, S. K. (1999). New land surface digital elevation model covers the Earth. Eos, Transactions American Geophysical Union, 80(6), 69-70. Giovanelli, R., Darling, J., Henderson, C., Hoffman, W., Barry, D., Cordes, J., ... & Stacey, G. (2001). The optical/infrared astronomical quality of high Atacama sites. II. Infrared characteristics. Publications of the Astronomical Society of the Pacific, 113(785), 803. Gorodetskaya, I. V., Kneifel, S., Maahn, M., Van Tricht, K., Thiery, W., Schween, J. H., ... & Van Lipzig, N. P. M. (2015). Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. The Cryosphere, 9(1), 285-304. Hellemeier, J. A., Yang, R., Sarazin, M., & Hickson, P. (2019). Weather at selected astronomical sites–an overview of five atmospheric parameters. Monthly Notices of the Royal Astronomical Society, 482(4), 4941-4950. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. Hou, X., Hu, Y., Du, F., & diğerleri. (2023). Machine learning-based seeing estimation and prediction using multi-layer meteorological data at Dome A, Antarctica. Astronomy and Computing, 43, 100710. Hund, A. J. (Ed.). (2014). Antarctica and the Arctic circle: a geographic encyclopedia of the earth's polar regions [2 volumes]. ABC-CLIO. IceCube Collaboration. (2006). First year performance of the IceCube neutrino telescope. arXiv preprint astro-ph/0604450. Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., ... & Watanabe, O. (2007). Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448(7156), 912-916. Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989-3034. Li, X., Wang, B., Qiu, B., & Wu, C. (2022). An all-sky camera image classification method using cloud cover features. Atmospheric Measurement Techniques, 15(11), 3629-3639. Liu, H., Jezek, K. C., & Li, B. (1999). Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system-based approach. Journal of Geophysical Research, 104(B10), 23199-23213. Liu, L. Y., Yao, Y. Q., Wang, Y. P., Ma, J. L., He, B. L., & Wang, H. S. (2010). Seeing measurements for the Guoshoujing Telescope (LAMOST) site with DIMM. Research in Astronomy and Astrophysics, 10(10), 1061. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259. Monteath, C. (1997). Hall & Ball: Kiwi Mountaineers: from Mount Cook to Everest. Cloudcap. Otarola, A., De Breuck, C., Travouillon, T., Matsushita, S., Nyman, L. Å., Wootten, A., ... & Pérez-Beaupuits, J. P. (2019). Precipitable Water Vapor, Temperature, and Wind Statistics At Sites Suitable for mm and Submm Wavelength Astronomy in Northern Chile. Publications of the Astronomical Society of the Pacific, 131(998), 045001. Parish, T. R., & Bromwich, D. H. (1998). A case study of Antarctic katabatic wind interaction with large-scale forcing. Monthly Weather Review, 126(1), 199-209. Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347-352), 240-242. Radionov, V. F., Lamakin, M. V., & Herber, A. (2002). Changes in the aerosol optical depth of the Antarctic atmosphere. Izvestiia Russian Academy Of Sciences Atmospheric And Oceanic Physics, 38(2), 179-183. Racine, R. (2005). Altitude, elevation, and seeing. Publications of the Astronomical Society of the Pacific, 117(830), 401. Saunders, W., Lawrence, J. S., Storey, J. W., Ashley, M. C., Kato, S., Minnis, P., ... & Kulesa, C. (2009). Where is the best site on Earth? Domes A, B, C, and F, and Ridges A and B. Publications of the Astronomical Society of the Pacific, 121(883), 976. Sarazin, M., Graham, E., & Kurlandczyk, H. (2006). FriOWL: A Site Selection Tool for the European Extremely Large Telescope (E-ELT) Project. The Messenger, 125, 44. Sims, G., Ashley, M. C. B., Cui, X., Everett, J. R., Feng, L., Gong, X., ... & Zhu, Z. (2012). Precipitable Water Vapor above Dome A, Antarctica, Determined from Diffuse Optical Sky Spectra. Publications of the Astronomical Society of the Pacific, 124, 74–83. Shikhovtsev, A. Y., Bolbasova, L. A., Kovadlo, P. G., & Kiselev, A. V. (2020). Atmospheric parameters at the 6-m Big Telescope Alt-azimuthal site. Monthly Notices of the Royal Astronomical Society, 493(1), 723-729. Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & García-Cascales, M. S. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544-556. Spearman, C. (1961). The proof and measurement of association between two things. Spinhirne, J. D., Palm, S. P., & Hart, W. D. (2005). Antarctica cloud cover for October 2003 from GLAS satellite lidar profiling. Geophysical Research Letters, 32, L22S05. https://doi.org/10.1029/2005GL023782. Storey, J. W. V. (2007). Introduction to the Antarctic Plateau. Chinese Astronomy and Astrophysics, 31, 98–100. Suparta, W., Abdul Rashid, Z. A., Mohd. Ali, M. A., Yatim, B., & Fraser, G. J. (2008). Observations of Antarctic precipitable water vapor and its response to solar activity based on GPS sensing. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1419-1447. Suparta, W. (2010). Using a global positioning system to estimate precipitable water vapor in Antarctica. Polar Geography, 33(1-2), 63-79. Tang, N. (Petra). (2010, Aralık). Astronomy within Antarctica: The Past and the Present Thomas, I. D., King, M. A., Clarke, P. J., & Penna, N. T. (2011). Precipitable water vapor estimates from homogeneously reprocessed GPS data: An intertechnique comparison in Antarctica. Journal of Geophysical Research, 116, D04107. Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: Methods and applications. CRC Press. Verlinden, K. L., Thompson, D. W., & Stephens, G. L. (2011). The three-dimensional distribution of clouds over the Southern Hemisphere high latitudes. Journal of Climate, 24(22), 5799-5811. Weller, G. E. (1969). A meridional surface wind speed profile in MacRobertson Land, Antarctica. PAGEOPH, 77, 193–200. Ye, H., Fetzer, E. J., Bromwich, D. H., Fishbein, E. F., Olsen, E. T., Granger, S. L., Lee, S.-Y., Chen, L., & Lambrigtsen, B. H. (2007). Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer. Geophysical Research Letters, 34, L19701. Yuan, X., Hu, Y., Liu, Q., Shang, Z., Liu, L., Hu, Z., & Xu, J. (2014). Meteorological Data for the Astronomical Site at Dome A, Antarctica. Publications of the Astronomical Society of the Pacific, 126(943). Ziad, A., Aristidi, E., Agabi, A., Borgnino, J., Martin, F., & Fossat, E. (2008). First statistics of the turbulence outer scale at Dome C. Astronomy & Astrophysics, 491, 917-921.
APA aksaker n, TANRIÖVER A, YERLI S, Erdoğan M, DÖNER Ö, TANİ H, ÖNER S, kurt z, BARAD A, BAYAZIT M (2023). Astronomi Için Antarktika'Da Yer Seçimi. , 0 - 50. 121F251
Chicago aksaker nazım,TANRIÖVER Anıl Akın,YERLI SINAN KAAN,Erdoğan Mehmet Akif,DÖNER ÖZGE RABİA,TANİ HEYYAM,ÖNER SERKAN,kurt zühal,BARAD AYA,BAYAZIT Murat Astronomi Için Antarktika'Da Yer Seçimi. (2023): 0 - 50. 121F251
MLA aksaker nazım,TANRIÖVER Anıl Akın,YERLI SINAN KAAN,Erdoğan Mehmet Akif,DÖNER ÖZGE RABİA,TANİ HEYYAM,ÖNER SERKAN,kurt zühal,BARAD AYA,BAYAZIT Murat Astronomi Için Antarktika'Da Yer Seçimi. , 2023, ss.0 - 50. 121F251
AMA aksaker n,TANRIÖVER A,YERLI S,Erdoğan M,DÖNER Ö,TANİ H,ÖNER S,kurt z,BARAD A,BAYAZIT M Astronomi Için Antarktika'Da Yer Seçimi. . 2023; 0 - 50. 121F251
Vancouver aksaker n,TANRIÖVER A,YERLI S,Erdoğan M,DÖNER Ö,TANİ H,ÖNER S,kurt z,BARAD A,BAYAZIT M Astronomi Için Antarktika'Da Yer Seçimi. . 2023; 0 - 50. 121F251
IEEE aksaker n,TANRIÖVER A,YERLI S,Erdoğan M,DÖNER Ö,TANİ H,ÖNER S,kurt z,BARAD A,BAYAZIT M "Astronomi Için Antarktika'Da Yer Seçimi." , ss.0 - 50, 2023. 121F251
ISNAD aksaker, nazım vd. "Astronomi Için Antarktika'Da Yer Seçimi". (2023), 0-50. https://doi.org/121F251
APA aksaker n, TANRIÖVER A, YERLI S, Erdoğan M, DÖNER Ö, TANİ H, ÖNER S, kurt z, BARAD A, BAYAZIT M (2023). Astronomi Için Antarktika'Da Yer Seçimi. , 0 - 50. 121F251
Chicago aksaker nazım,TANRIÖVER Anıl Akın,YERLI SINAN KAAN,Erdoğan Mehmet Akif,DÖNER ÖZGE RABİA,TANİ HEYYAM,ÖNER SERKAN,kurt zühal,BARAD AYA,BAYAZIT Murat Astronomi Için Antarktika'Da Yer Seçimi. (2023): 0 - 50. 121F251
MLA aksaker nazım,TANRIÖVER Anıl Akın,YERLI SINAN KAAN,Erdoğan Mehmet Akif,DÖNER ÖZGE RABİA,TANİ HEYYAM,ÖNER SERKAN,kurt zühal,BARAD AYA,BAYAZIT Murat Astronomi Için Antarktika'Da Yer Seçimi. , 2023, ss.0 - 50. 121F251
AMA aksaker n,TANRIÖVER A,YERLI S,Erdoğan M,DÖNER Ö,TANİ H,ÖNER S,kurt z,BARAD A,BAYAZIT M Astronomi Için Antarktika'Da Yer Seçimi. . 2023; 0 - 50. 121F251
Vancouver aksaker n,TANRIÖVER A,YERLI S,Erdoğan M,DÖNER Ö,TANİ H,ÖNER S,kurt z,BARAD A,BAYAZIT M Astronomi Için Antarktika'Da Yer Seçimi. . 2023; 0 - 50. 121F251
IEEE aksaker n,TANRIÖVER A,YERLI S,Erdoğan M,DÖNER Ö,TANİ H,ÖNER S,kurt z,BARAD A,BAYAZIT M "Astronomi Için Antarktika'Da Yer Seçimi." , ss.0 - 50, 2023. 121F251
ISNAD aksaker, nazım vd. "Astronomi Için Antarktika'Da Yer Seçimi". (2023), 0-50. https://doi.org/121F251