Yıl: 2024 Cilt: 41 Sayı: 1 Sayfa Aralığı: 28 - 35 Metin Dili: İngilizce DOI: 10.16882/HortiS.1451560 İndeks Tarihi: 06-05-2024

The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse

Öz:
This study aimed to investigate the effects of a liquid fraction of digestate obtained from different biogas plants on the growth and mineral nutrition of cucumber plants under greenhouse conditions. For this purpose, Liquid Biogas Digestates (LBD) obtained from two different plants (A-B) with different properties were applied to pots with 10 kg of soil in 5 different doses (0, 20, 40, 60, and 80 t ha-1) and the effects of the treatments were observed. As a result of the research, the highest yields increased 24.6% for digestate A in A5 (80 t ha-1) and 29% for digestate B in B3 (40 t ha-1) compared to control. While LBD contributed to the increase of N, Ca, Zn, Cu, and Mn concentrations in the leaf samples, it was observed that the dose increase did not have a linear effect on N, Ca, Zn, Cu, and Mn concentrations in the leaf samples. It is thought that liquid biogas wastes produced in biogas plants have positive effects on fruit yield, agricultural practices can be taken as the basis for the disposal of these wastes and the use of liquid biogas residues in soils by eliminating potential risks can provide significant benefits.
Anahtar Kelime: Biogas Cucumber Liquid biogas digestates Mineral nutrition Yield

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abubaker, J., Risberg, K., & Pell, M. (2012). Biogas residues as fertilisers–Effects on wheat growth and soil microbial activities. Applied Energy, 99:126-134.
  • Adamovics, A., & Sivicka, I. (2023). Influence of biogas digestate, wood ash and their mixtures on the yield and quality of cucumbers. AGROFOR International Journal, 8(1):68-75.
  • Akanbi, W.B., Togun, A.O., Adediran, J.A., & Lupeju, E.A.O. (2010). Growth, dry matter and fruit yield components of okra under organic and inorganic sources of nutrients. American-Eurasian Journal of Sustainable Agriculture, 4:1-13.
  • Anonymous, (1988). Fruit, vegetables and products - nitrite and nitrate definition - molecular absorption spectrophotometric method. Turkish Standard, ICS 67.080, TS6183.
  • Alburquerque, J.A., De LaFuente, C., Campoy, M.M., Carrascoa, L., Nájerab, I., Baixaulib, C., Caravacaa, F., Roldána, A., Cegarraa, J., & Bernal, M.P. (2012). Agricultural use of digestate for horticultural crop production and improvement of soil properties. European Journal of Agronomy, 43:119-128.
  • Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, Ç., Nguyen, D.D., Chang, S.W., Atabani, A.E., Al-Muhtaseb, A.H., & Unalan, S. (2020). Biogas production from organic waste: recent progress and perspectives. Waste and Biomass Valorization. 11:1019–1040.
  • Barbosa, D.B.P., Nabel, M., & Jablonowski, N.D. (2014). Biogas-digestate as nutrient source for biomass production of Sida hermaphrodita, Zea mays L. and Medicago sativa L. Energy Procedia, 59:120-126.
  • Baştabak, B. (2019). Investigation of the effect of fermented fertilizer from biogas plant in lettuce cultivation. MSc Thesis, Ege University, İzmir.
  • Baştabak, B., & Koçar, G. (2020). A review of the biogas digestate in agricultural framework. Journal of Material Cycles and Waste Management, 22:1318- 1327.
  • Bauer, A., Mayr, H., Hopfner-Sixt, K., & Amon, T. (2009). Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues. Journal of Biotechnology, 142:56–63.
  • Black, C.A. (1957). Soil-Plant Relationsships. John Wiley and Ons, Inc., Neywork.
  • Black, C.A. (1965). Methods of Soil Analysis Part 2, Amer. Society of Agronomy Inc., Publisher Madisson, Wilconsin, U.S.A., p:1372-1376.
  • Bouyoucos, G.J. (1955). A Recalibration of the Hydrometer Method for making mechanical analysis of the soils. Agronomy Journal, 4(9):434.
  • Bremner, J.M. (1965). Methods of soil analysis. American Society of Agronomy Inc., Medison, WT.
  • Chang, I.S., Zhao, J., Yin, X., Wu, J., Jia, Z., & Wang, L. (2011). Comprehensive utilizations of biogas in Inner Mongolia. Renewable and Sustainable Energy Reviews, 15:442-1453.
  • Chiew, Y.L., Spångberg, J., & Baky, A. (2015). Environmental impact of recycling digested food waste as a fertilizer in agriculture – A case study. Resources, Conservation and Recycling, 95:1-14.
  • Evliya, H. (1964) Kültür bitkilerinin beslenmesi. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Sayı:10, Ankara (in Turkish).
  • Ferdous, Z., Ullah, H., Datta, A., Anwar, M., & Ali, A. (2018). Yield and profitability of tomato as influenced by integrated application of synthetic fertilizer and biogas slurry. International Journal of Vegetable Science, 24(5):445-455.
  • Ferdous, Z., Ullah, H., Datta, A. Attia, A., Rakshit, A., & Molla, S.H. (2020). Application of biogas slurry in combination with chemical fertilizer enhances grain yield and profitability of maize (Zea mays L.). Communications in Soil Science and Plant Analysis, 51(19):2501-2510.
  • İbil, A. (2019). The effects of different solid and liquid biogas wastes on corn (Zea mays L.) yield and quality. Master Thesis. Adnan Menderes University, Aydın.
  • Jackson, M. (1967). Soil chemical analysis prentice. Hall of India Private Limited, New Delhi, 498(1).
  • Kacar, B. (1972). Bitki ve toprağın kimyasal analizleri. II. Bitki Analizleri, A.Ü. Ziraat Fak. Yayınları: 453, Ankara (in Turkish).
  • Kacar, B., & Inal, A. (2008). Bitki Analizleri. Nobel Yayın, 1241, 891 (in Turkish).
  • Karaman, R., & Türkay, C. (2022). Effect of biogas waste applications on agronomic and some quality traits in barley (Hordeum vulgare L.). Journal of Agriculture Faculty of Ege University, 59(4):633-643.
  • Knudsen, D., Peterson, G.A., & Pratt, P.F (1982). Lithium, sodium and potassium. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties.) The GW (1982). Exchangeable cations. pp. 159-l65. Chemical and Microbiological Properties. Agronomy Monograph No.9 (2nd Ed). ASA-SSSA, Madison. Wisconsin, USA.
  • Koszel, M., & Lorencowicz, E. (2015). Agricultural use of biogas digestate as a replacement fertilizers. Agriculture and Agricultural Science Procedia, 7:119- 124.
  • Koszel, M., Parafiniuk, S., Szparaga, A., Bochniak, A., Kocira, S., Atanasov, A.Z., & Kovalyshyn, S. (2020). Impact of digestate application as a fertilizer on the yield and quality of winter rape seed. Agronomy, 10:878.
  • Kouřimská L., Poustková I., & Babička L. (2012). The use of digestate as a replacement of mineral fertilizers for vegetables growing. Scientia Agriculturae Bohemica, 43(4):121-126.
  • Li, N., Yang, X., Liu, J., Liu, Y., Chen, Q., Wu, F., & Chang, R. (2023). Effect of raw material and application rate of biogas slurry on Cucumber growth, Fusarium wilt suppression, and soil properties. Environmental Technology & Innovation, 32:103396.
  • Liao, C.F. (1981). Devarda's alloy method for total nitrogen determination. Soil Science Society of America Journal, 45(5):852-855.
  • Lindsay, W.L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3):421- 428.
  • Losak, T., Hlusek, J., Zatloukalova, A., Musilova, L., Vitezova, M., Skarpa, P., Zlamalova, T., Fryc, J., Vitez, T., Marecek, J., & Martensson, A. (2014). Digestate from biogas plants is an attractive alternative to mineral fertilisation of kohlrabi. Journal of Sustainable Development of Energy, Water and Environment Systems, 2(4):309-318.
  • Lukehurst C.T., Frost, P., & AlSeadi, T. (2010). Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy, 1-36.
  • Makadi, M., Tomocsik, A., Eichler-Loebermann, B., & Schiemenz, K. (2008). Nutrient cycling by using residues of bioenergy production—Effects of biogas- digestate on plant and soil parameters. Cereal Research Communication, 36:1807–1810.
  • Moller, K., Stinner, W., Deuker, A., & Leithold, G. (2008). Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutrient Cycling in Agroecosystems, 82:209–32.
  • Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34:473-492.
  • Olsen, S.R., & Sommers, E.L. (1982). Phosphorus Availability Indices. Phosphorus Soluble in Sodium Bicarbonat Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Editors: A.L. Page. R.H. Miller. D.R. Keeney, 404-430.
  • Ronga, D., Setti, L., Salvarani, C., De Leo, R., Bedin, E., Pulvirenti, A., Milc, J., Pecchioni, N., & Francia, E. (2019). Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Scientia Horticulturae, 244:172–181.
  • Rózyło, K., Swieca, M., Gawlik-Dziki, U., Andruszczak, S., Kwieci ́nska-Poppe, P., & Kraska, P. (2017). Phytochemical properties and heavy metal accumulation in wheat grain after three years fertilisation with biogas digestate and mineral waste. Agricultural and Food Science, 26:148-159.
  • Soltanpour, P.N., & Workman, S.M. (1981). Use of inductively-coupled plasma spectroscopy for the simultaneous determination of macro and micronutrients in NH4HCO3-DTPA extracts of soils. In Barnes R.M. (ed). Developments in Atomic Plasma Analysis, USA, pp. 673-680.
  • Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85:849-860.
  • Xu, C., Tian, Y., Sun, Y., & Dong, L. (2013). Effects of biogas slurry irrigation on growth, photosynthesis, and nutrient status of Perilla frutescens seedlings. Communications in Soil Science and Plant Analysis, 44(22):3381-3390.
  • Yadav, A., & Garg, V.K. (2016). Vermiconversion of biogas plant slurry and parthenium weed mixture to manure. International Journal of Recycling of Organic Waste in Agriculture, 5:301-309.
  • Yaraşır, N., Erenkul, O., & Yiğit, A. (2018). The effect of different doses of liquid biogas fermentation wastes on yield and quality of bread wheat (Triticum aestivum L.). Adnan Menderes University Faculty of Agriculture Journal of Agricultural Sciences, 15(2):9-16.
  • Yaylacı, C., & Erdal, İ. (2021). Effect of biogas digestate, incubation, and npk fertilization on some soil properties and growth, mineral nutrition, and nutrient uptake of wheat. Journal of Elementology, 26(3):697- 715.
  • Yu, F.B., Luo, X.P., Song, C.F., Zhang, M.X., & Shan, D.S. (2010). Concentrated biogas slurry enhanced soil fertility and maize quality. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 60:262–68.
  • Yurtsever, N. (1984). Deneysel istatistik metotları. Köy Hizmetleri Genel Müdürlüğü Yayınları, No: 56, Ankara (in Turkish).
APA Çalık B, SÖNMEZ İ (2024). The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. , 28 - 35. 10.16882/HortiS.1451560
Chicago Çalık Buşra,SÖNMEZ İLKER The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. (2024): 28 - 35. 10.16882/HortiS.1451560
MLA Çalık Buşra,SÖNMEZ İLKER The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. , 2024, ss.28 - 35. 10.16882/HortiS.1451560
AMA Çalık B,SÖNMEZ İ The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. . 2024; 28 - 35. 10.16882/HortiS.1451560
Vancouver Çalık B,SÖNMEZ İ The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. . 2024; 28 - 35. 10.16882/HortiS.1451560
IEEE Çalık B,SÖNMEZ İ "The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse." , ss.28 - 35, 2024. 10.16882/HortiS.1451560
ISNAD Çalık, Buşra - SÖNMEZ, İLKER. "The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse". (2024), 28-35. https://doi.org/10.16882/HortiS.1451560
APA Çalık B, SÖNMEZ İ (2024). The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. Horticultural Studies, 41(1), 28 - 35. 10.16882/HortiS.1451560
Chicago Çalık Buşra,SÖNMEZ İLKER The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. Horticultural Studies 41, no.1 (2024): 28 - 35. 10.16882/HortiS.1451560
MLA Çalık Buşra,SÖNMEZ İLKER The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. Horticultural Studies, vol.41, no.1, 2024, ss.28 - 35. 10.16882/HortiS.1451560
AMA Çalık B,SÖNMEZ İ The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. Horticultural Studies. 2024; 41(1): 28 - 35. 10.16882/HortiS.1451560
Vancouver Çalık B,SÖNMEZ İ The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse. Horticultural Studies. 2024; 41(1): 28 - 35. 10.16882/HortiS.1451560
IEEE Çalık B,SÖNMEZ İ "The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse." Horticultural Studies, 41, ss.28 - 35, 2024. 10.16882/HortiS.1451560
ISNAD Çalık, Buşra - SÖNMEZ, İLKER. "The Effects of Liquid Biogas Digestate on Yield and Mineral Nutrition of Cucumber Growing in Greenhouse". Horticultural Studies 41/1 (2024), 28-35. https://doi.org/10.16882/HortiS.1451560