Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü

19 12

Proje Grubu: ÇAYDAG Sayfa Sayısı: 78 Proje No: 121Y574 Proje Bitiş Tarihi: 15.03.2023 Metin Dili: Türkçe DOI: 121Y574 İndeks Tarihi: 02-04-2024

Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü

Öz:
Bu proje çalışmasında oksijen transfer verimini arttırmak ve aşırı biyofilm gelişimini önlemek amacıyla farklı oranlarda katılan nano boyutlu sıfır değerlikli demir ile gaz transfer membranları üretilmiş ve membran biyofilm reaktörlerinde kullanılmıştır. Proje kapsamında bir adet nZVI katkısız ve 3 adet ağırlıkça farklı oranlarda (%0.25, %0.5, %0.75) nZVI katkılı gaz transfer membranlarını içeren toplamda 4 adet laboratuvar ölçekli membran biyofilm reaktörler eş zamanlı KOİ ve amonyum oksidasyon performanslarının ve biyofilm kalınlıklarının değerlendirilmesi amacıyla farklı hidrolik bekleme süresi ve oksijen gaz basıncı altında çalıştırılmıştır. Aynı zamanda üretilen membranların fiziko-kimyasal özellikleri belirlenmiştir. nZVI katkısı ile gaz transfer membran yapısında düzensiz yapılar ve makro boşluklar oluşmuştur. Membranda nZVI katkısı arttıkça membran yüzey hidrofilikliği ve porozitede bir artış gözlenirken oksijen transfer verimi ve malzeme sertliğinde bir azalma meydana gelmiştir. Aynı zamanda nZVI ilavesi anti-bakteriyel bir etki sergilememiştir. Yaklaşık 90 gün boyunca 8 farklı periyot ile işletimde olan membran biyofilm reaktörler arasında KOİ giderim verimi açısından belirgin bir fark tespit edilmemiş ve KOİ giderim verimi %70 ile 95 aralığında belirlenmiştir. Amonyum oksidasyon veriminin nZVI katkısından ziyade membran biyofilm reaktörlerdeki işletimsel parametrelerden (hidrolik bekleme süresi, oksijen gaz basıncı) çok daha fazla etkilendiği ve amonyum giderme veriminin %91?den yaklaşık %20?lere kadar düştüğü tespit edilmiştir. Tüm işletme periyotlarının sonunda reaktörlerdeki biyofilm kalınlıkları yaklaşık 700 µm olarak belirlenmiş sadece bir reaktörde 100 µm?lik biyofilm kalınlığında bir azalma gözlenmiştir. Tüm bu sonuçlardan nZVI katkısının beklenilenin aksine anti-bakteriyel bir etki sergilemediği ve gaz transfer membranların önemli bir özelliği olan gaz transfer verimini azalttığı sonucuna varılmıştır.
Anahtar Kelime: membran biyofilm reaktör biyofilm kalınlığı sıfır değerlikli demir nitrifikasyon

The Control of Biofilm Thickness in Zero Valence Nano Iron Based Oxygen Gas Transfer Membrane

Öz:
In this project study, gas transfer membranes were produced with nano-sized zero-valent iron added at different rates in order to increase oxygen transfer efficiency and prevent excessive biofilm development and used in membrane biofilm reactors. Within the scope of the project, a total of 4 laboratory-scale membrane biofilm reactors containing one without nZVI and 3 nZVI-doped gas transfer membranes with different weight ratios (0.25%, 0.5%, 0.75%) were operated at different hydraulic retention time and oxygen pressure in order to evaluate the simultaneous COD and ammonium oxidation performances and biofilm thicknesses. Moreover, the physico-chemical properties of the produced membranes were determined. With the contribution of nZVI, irregular structures and macro-voids were formed in the gas transfer membrane structure. As the nZVI contribution in the membrane increased, an increase in the membrane surface hydrophilicity and porosity was observed, while a decrease in the oxygen transfer efficiency and material hardness occurred. Also, the addition of nZVI did not exhibit an antibacterial effect. There was no significant difference in COD removal efficiency between the membrane biofilm reactors, which were in operation for 8 different periods for approximately 90 days, and the COD removal efficiency was determined in the range of 70 to 95%. It was determined that the ammonium oxidation efficiency was much more affected by the operational parameters (hydraulic residence time, oxygen gas pressure) in membrane biofilm reactors rather than the contribution of nZVI, and the ammonium removal efficiency decreased from 91% to about 20%. At the end of all operating periods, the biofilm thickness in the reactors was determined as approximately 700 µm, and a decrease in biofilm thickness of 100 µm was observed in only one reactor. From all these results, it was concluded that the nZVI additive did not exhibit an anti-bacterial effect contrary to expectations and reduced the gas transfer efficiency, which is an important feature of gas transfer membranes.
Anahtar Kelime: membran biyofilm reaktör biyofilm kalınlığı sıfır değerlikli demir nitrifikasyon

Erişim Türü: Erişime Açık
  • Abdelfattah, A., Hossain, M. I. & Cheng, L. 2020. ‘’High-strength wastewater treatment using microbial biofilm reactor: a critical review’’, World Journal of Microbiology and Biotechnology, 36 (5), 75.
  • Aksoy, Y., Hasar, H. 2021. ‘’Fabrication of PVDF HF membrane for bubble free gas transfer via wet phase inversion’’, Journal of Applied Polymer Science, 51405.
  • Al Harby, N. F., El-Batouti, M., & Elewa, M. M. 2022. ‘’Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review’’, Nanomaterials, 12 (20), 3637.
  • Aljohny, B.O., Ahmad, Z., Shah, S.A., Anwar, Y., Khan, S.A. 2020. ‘’ Cellulose acetate composite films fabricated with zero-valent iron nanoparticles and its use in the degradation of persistent organic pollutants’’, Applied Organometallic Chemistry, 620.
  • Aybar, M., Perez-Calleja, P., Li, M., Pavissich, J., & Nerenberg, R. 2019. ‘’Predation creates unique void layer in membrane-aerated biofilms’’, Water Research, 149, 232–242.
  • Aydın, E., Erdem, M., Casey, E., & Hasar, H. 2021. ‘’Oxidation mechanism of chlortetracycline in a membrane aerated biofilm reactor’’, Environmental Technology & Innovation, 24, 101910.
  • Bicudo, J. R., Heffernan, B., Klassen, A., Rao, M., McConomy, J., Syron, E. & McDermott, L. 2019. ‘’A one-year demonstration of nutrient removal with membrane aerated biofilm reactor’’, In: WEF Nutrient Removal and Recovery Symposium, 89–103.
  • Bosch, J., Heister, K., Hofmann, T., Meckenstock, R.U., 2010. ‘’Nanosized iron oxide colloids strongly enhance microbial iron reduction’’, Applied Environmental Microbiology, 76, 184–189.
  • Cai, J., Zheng, P., Qaisar, M. & Zhang, J. 2017. ‘’Elemental sulfur recovery of biological sulfide removal process from wastewater: a review’’, Critical Reviews in Environmental Science and Technology 47 (21), 2079–2099.
  • Cole, A. C., Semmens, M. J. & LaPara, T. M. 2004. ‘’Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen’’, Applied and Environmental Microbiology 70 (4), 1982–1989.
  • Cote P., Peeters, J., Adams, N., Hong, Y., Long, Z., Ireland, J. , 2015. ‘’A new membrane- aerated biofilm reactor for low-energy wastewater treatment: pilot results’’, Proceedings of the Water Environment Federation, 13, 4226-4239.
  • Çelik, A., Tunc, M. S., Hanay, O., Taskan, E., & Hasar, H. 2018. ‘’Comprehensive evaluation of autohydrogenotrophic membrane biofilm reactor treating OTC-enriched water medium’’, Bioprocess and Biosystems engineering, 41, 1261-1269.
  • Demirsoy, N., Nuray, U. C. A. R., Aysen, O. N. E. N., & Kizildag, N. 2015. ‘’Nanocomposite Nanofibers of Polyacrylonitrile (PAN) and Silver Nanoparticles (AgNPs) Electrospun from Dimethylsulfoxide’’, Marmara Fen Bilimleri Dergisi, 27, 16-18.
  • Dizge, N., Ozay, Y., Şimşek, U.B.,Gülşen, H.E., Akarsu, C., Turabik, M., Ünyayar, A., Ocakoğlu, K. 2017. ‘’Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles’’, Membrane Water Treatment, 8(1), 51-71.
  • Downing, L. S., & Nerenberg, R. 2008. ‘’Effect of oxygen gradients on the activity and microbial community structure of a nitrifying membrane aerated biofilm’’, Biotechnology and Bioengineering, 101(6), 1193-1204.
  • Essila, N.J., Semmens, M.J., Voller, V.R., 2000. ‘’Modeling biofilms on gas-permeable supports: concentration and activity profiles’’, Journal of Environmental Engineering 126 (3), 250–257.
  • Gao, M., Zhu, Y., Yan, J., Wu, W., & Wang, B. 2022. ‘’Micromechanism Study of Molecular Compatibility of PVDF/PEI Blend Membrane’’, Membranes, 12(8), 809.
  • Ghaemi, N., Madaeni, S. S., Daraei, P., Rajabi, H., Zinadini, S., Alizadeh, A., ... & Ghouzivand, S. 2015. ‘’Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe3O4 nanoparticles’’, Chemical Engineering Journal, 263, 101-112.
  • Gui, M., Smuleac, V., Ormsbee, L. E., Sedlak, D. L., & Bhattacharyya, D. 2012. ‘’Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water’’, Journal of Nanoparticle Research, 14, 1-16.
  • Hanay, Ö., Taşkan, E., Yıldız, B., Hasar, H., & Casey, E. 2014. ‘’Gas/ substrate fluxes and microbial community in phenol biodegradation using an O2 based membrane biofilm reactor’’, Clean–Soil, Air, Water, 42(1), 36-42.
  • Hanay, Ö. ve Türk, H. 2015. ‘’Comprehensive evaluation of adsorption and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron’’, Desalination and water treatment, 53(7), 1986-1994.
  • Harouaka, K., Mansor, M., Macalady, J. L., & Fantle, M. S. 2016. ‘’Calcium isotopic fractionation in microbially mediated gypsum precipitates’’, Geochimica Cosmochimica Acta, 184, 114-131.
  • Hasar, H., Xia, S., Ahn, C. H ., & Rittmann, B. E. 2008. ‘’Simultaneous removal o f organic matter and nitrogen compounds by an aerobic/ anoxic membrane biofilm reactor’’, Water Research, 42(15), 4109–4116.
  • Hashim, N. A., Liu, Y., & Li, K. 2011. ‘’Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution’’, Chemical Engineering Science, 66(8), 1565-1575.
  • He, Z., Mahmud, S., Yang, Y., Zhu, L., Zhao, Y., Zeng, Q., ... & Zhao, S. 2020. ‘’Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants’’, Separation and Purification Technology, 250, 117266.
  • He, H., Wagner, B. M., Carlson, A. L., Yang, C., & Daigger, G. T. 2021. ‘’Recent progress using membrane aerated biofilm reactors for wastewater treatment’’, Water Science and Technology, 84(9), 2131-2157.
  • Heffernan, B., Murphy, C. D., Syron, E. & Casey, E. 2009. ‘’Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor’’, Environmental Science and Technology 43 (17), 6776–6785.
  • Heffernan, B., Shrivastava, A., Toniolo, D., Semmens, M., Syron, E. 2017. ‘’Operation of a large scale membrane aerated biofilm reactor for the treatment of municipal wastewater’’, Proceedings of the Water Environment Federation 2017 (16), 285–297.
  • Hosseini, S. ve Mansourizadeh, A. 2017. ‘’Preparation of porous hydrophobic poly (vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactors for CO2 stripping’’, Journal of the Taiwan Institute of Chemical Engineers, 76, 156-166.
  • Hou, F., Li, B., Xing, M., Wang, Q., Hu, L., Wang, S. 2013. ‘’Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR)’’, Bioresource Technology 140, 1–9.
  • Hou, XL. Chen, X.,Bi, SY., Li, K., Zhang, CH., Wang, JZ., Zhang, WQ. 2020. ‘’ Catalytic degradation of TCE by a PVDF membrane with Pd-coated nanoscale zero-valent iron reductant’’, Science of the Total Environment, 702.
  • Houweling, D., Peeters, J., Cote, P., Long, Z., Adams, N., 2017. ‘’Proving membrane aerated biofilm reactor (MABR) performance and reliability: results from four pilots and a full-scale plant’’, Process of Water Environmental Federation, (16), 272–284.
  • Houweling, D. ve Daigger, G. T. 2019. ‘’Intensifying Activated Sludge Using Media-Supported Biofilms’’. CRC Press, Boca Raton, FL. https://www.taylorfrancis.com/books/9780429522420 Hwang, J. H., Cicek, N., & Oleszkiewicz, J. A. 2010. ‘’Achieving biofilm control in a membrane biofilm reactor removing total nitrogen’’, Water Research, 44(7), 2283-2291.
  • Hwang, Y. H., Kim, D. G., & Shin, H. S. 2011. ‘’Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron’’, Applied Catalysis B: Environmental, 105(1-2), 144-150.
  • Jorgensen, B., Findlay, A., Pellerin, A., 2019. ‘’The Biogeochemical Sulfur Cycle of Marine Sediments’’, Frontiers Microbiology, 10, 849.
  • Kamal, N., Kochkodan, V., Zekri, A., & Ahzi, S. 2019. ‘’Polysulfone membranes embedded with halloysites nanotubes: Preparation and properties’’, Membranes, 10(1), 2.
  • Kunlasubpreedee, P. ve Visvanathan, C. 2020. ‘’Performance evaluation of membrane- aerated biofilm reactor for acetonitrile wastewater treatment’’, Journal of Environmental Engineering, 146 (7), 04020055.
  • Landes, N., Rahman, A., Morse, A., & Jackson, W. A. 2021. ‘’Performance of a lab-scale membrane aerated biofilm reactor treating nitrogen dominant space-based wastewater through simultaneous nitrification-denitrification’’, Journal of Environmental Chemical Engineering, 9(1), 104644.
  • Lefevre, E., Bossa, N., Wiesner, M.R., Gunsch, C.K., 2016. ‘’A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities’’, The Science Total Environment, 565, 889–901.
  • Li, T., Liu, J., Bai, R., Wong, F. 2008. ‘’Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater’’, Environmental Science and Technology, 42 (6), 2099–2104.
  • Li, J. F., Xu, Z. L., Yang, H., Yu, L. Y., & Liu, M. 2009. ‘’ Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane’’, Applied Surface Science, 255(9), 4725-4732.
  • Li, Y. ve Zhang, K., 2018. ‘’Pilot scale treatment of polluted surface waters using membrane- aerated biofilm reactor (MABR)’’, Biotechnology and Biotechnological Equipment, 32 (2), 376– 386.
  • Li, T. ve Liu, J. 2019. ‘’Factors affecting performance and functional stratification of membrane- aerated biofilms with a counter-diffusion configuration’’, RSC Advances 9 (50), 29337–29346.
  • Li, S.L., Li, J.H., Wang, W., Zhang, W.X., 2019. ‘’ Recovery of gold from wastewater using nanoscale zero-valent iron, Environmental Science Nano 6, 519–527.
  • Li, J., Du, Q., Peng, H., Zhang, Y., Bi, Y., Shi, Y., Xu, Y., Liu, T., 2020. ‘’Optimization of biochemical oxygen demand to total nitrogen ratio for treating landfill leachate in a single-stage partial nitrification-denitrification system’’, Journal of Cleaner Production, 266, 121809.
  • Li, N., Chen, HD., Lu, YZ., Zhu, MC., Hu, ZX., Chen, SW., Zeng, RJX. 2021. ‘’ Nanoscale zero- valent iron-modified PVDF membrane prepared by a simple filter-press coating method can robustly remove 2-chlorophenol from wastewater’’, Chemical Engineering Journal’’, 416.
  • Liao, B. Q., Liss, S. N. 2007. ‘’A comparative study between thermophilic and mesophilic membrane aerated biofilm reactors’’ Journal of Environmental Engineering and Science, 6(2), 247–252.
  • Lin, T., Lu, Z., & Chen, W. 2014. ‘’Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach’’, Journal of Membrane Science, 461, 49–58.
  • Ling, L., Huang, X.Y., Zhang, W.X., 2018. ‘’Enrichment of precious metals from wastewater with core–shell nanoparticles of iron’’, Advanced Materials, 30, 1705703.
  • Liu, N., Liu, J., Wang, H., Li, S., & Zhang, W. X. 2022. ‘’ Microbes team with nanoscale zero- valent iron: A robust route for degradation of recalcitrant pollutants’’, Journal of Environmental Sciences, 118, 140-146.
  • Lu, D. 2018. ‘’Comparison between thermophilic and mesophilic membrane-aerated biofilm reactors a modeling study (Master’s Thesis). Lakehead University, Canada.
  • Lu, D., Bai, H., Kong, F., Liss, N.S., Liao, B. 2020.’’ Recent advances in membrane aerated biofilm reactors’’, Critical Reviews in Environmental Sciences and Technology, 42(1), 36–42.
  • Mansor, M., Xu, J., 2020. ‘’Benefits at the nanoscale: a review of nanoparticle-enabled processes favoring microbial growth and functionality’’, Environmental Microbiollogy, 22.
  • Martin, K.J. ve Nerenberg, R., 2012. ‘’The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments’’. Bioresource Technology, 122, 83–94.
  • Matsumoto, S., Terada, A., Tsuneda, S. 2007. ‘’Modeling of membrane-aerated biofilm: effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification’’, Biochemical Engineering Journal, 37, 98–107.
  • Mei, X., Liu, J., Guo, Z., Li, P., Bi, S., Wang, Y., Yang, Y., Shen, W., Wang, Y., Xiao, Y., Yang, X., Zhou, B., Liu, H. & Wu, S. 2019. ‘’Simultaneous p-nitrophenol and nitrogen removal in PNP wastewater treatment: comparison of two integrated membrane-aerated bioreactor systems’’, Journal of Hazardous Materials, 363, 99–108.
  • Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., Kappler, A., 2014. ‘’The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle’’ Nature Reviews Microbiology, 12, 797–808.
  • Mehrabi, S., Houweling, D. & Dagnew, M. 2021 Single-Stage Biofilm-Based Total Nitrogen Removal in a Membrane Aerated Biofilm Reactor: Impact of Aeration Mode, HRT and Scouring Intensity, In Review. https://www.researchsquare.com/article/rs-400202/v1
  • Mehta, P. P., & Pawar, V. S. 2018. ‘’Electrospun nanofiber scaffolds: technology and applications. In Applications of nanocomposite materials in drug delivery’’ Woodhead Publishing, 509-573.
  • Misiak, K., Casey, E. & Murphy, C. D. 2011. ‘’Factors influencing 4-fluorobenzoate degradation in biofilm cultures of Pseudomonas knackmussii B13’’, Water Research 45 (11), 3512–3520.
  • Najafi, M., Sadeghi, M., Bolverdi, A., Pourafshari Chenar, M., & Pakizeh, M. 2018. ‘’Gas permeation properties of cellulose acetate/silica nanocomposite membrane’’ Advances in Polymer Technology, 37(6), 2043-2052.
  • Peeters, J., Adams, N., Long, Z., Coˆt ́ e, P., Kunetz, T., 2017. ‘’Demonstration of innovative MABR low-energy nutrient removal technology at Chicago MWRD’’. Water Practice Technology, 12 (4), 927–936.
  • Pellicer-Nàcher, C., Domingo-Félez, C., Lackner, S. & Smets, B. F. 2013. ‘’Microbial acivity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors’’, Journal of Membrane Science 446, 465–471.
  • Perez-Calleja, P., Aybar, M., Picioreanu, C., Esteban-Garcia, A. L., Martin, K. J. & Nerenberg, R. 2017. ‘’Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies’’, Water Research 121, 349–360.
  • Rabuni, M.F. 2014. ‘’Chemical and thermal stability studies of hydrophobic and hydrophilic Polyvinylidene Fluoride (PVDF) membranes in alkaline environments, Doctoral dissertation, University of Malaya.
  • Rothemund, C., Camper, A., Wilderer, P.A., 1994. Biofilms growing on gas permeable membranes. Water Science and Technology 29 (10-11), 447–454.
  • Salman, M. Y., Taşkan, E., & Hasar, H. 2022. ‘’Comparative potentials of H2-and O2-MBfRs in removing multiple tetracycline antibiotics’’, Process Safety and Environmental Protection, 167, 184-191.
  • Sanchez-Huerta, C., Fortunato, L., Leiknes, T., & Hong, P. Y. 2022. ‘’Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR)’’, Journal of Hazardous Materials, 432, 128698.
  • Saranya, R., Arthanareeswaran, G., İsmail, A.F., Dionysiou, D., Paul, D. 2015. ‘’Zero-valent iron impregnated cellulose acetate mixed matrix membranes for the treatment of textile industry effluent’’, RSC Advances, 5(77), 62486-62497.
  • Sathyamoorthy, S., Tse, Y., Gordon, K., Houwelling, D. & Coutts, D. 2019. ‘’BNR process intensification using membrane aerated biofilm reactors’’, In: WEF Nutrient Removal and Recovery Symposium, 527–535.
  • Satoh, H., Ono, H., Rulin, B., Kamo, J., Okabe, S., Fukushia, K.I. 2004. ‘’Macroscale and microscale analyses of nitrification and denitrfication in biofilms attached on membrane aerated biofilm reactors’’, Water Research, 38, 1633-1643.
  • Semmens, M.J., Dahm, K., Shanahan, J., Christianson, A. 2003. ‘’COD and nitrogen removal by biofilms growing on gas permeable membranes’’, Water Research 37, 4343–4350.
  • Shanahan, J.W. ve Semmens, M.J. 2004. ‘’ Multipopulation model of membrane-aerated biofilms, Environmental Science Technology, 38, 3176–3183.
  • Shoji, T., Itoh, R., Nittami, T., Kageyama, T., Noguchi, M. & Yamasaki, A. 2020. ‘’Influence of the flow velocity on membrane-aerated biofilm reactors: application of a rotating disk for local flow control’’, Biochemical Engineering Journal 164, 107771.
  • Shechter, R., Szczupak, A. & Stein, D. 2020. ‘’High rate ammonia removal in side stream treatment with MABR: lab and pilot results’’, Proceedings of the Water Environment Federation, Vol. 8.
  • Silva, LLS., , Abdelraheem, W., Nadagouda, MN., Rocco, AM., Dionysiou, DD., Fonseca, FV., Borges, CP. 2021. ‘’ Novel microwave-driven synthesis of hydrophilic polyvinylidene fluoride/polyacrylic acid (PVDF/PAA) membranes and decoration with nano zero-valent-iron (nZVI) for water treatment applications’’, Journal of Membrane Science, 620.
  • Stookey, L.L. (1970). ‘’Ferrozine-a new spectrofotometric reagent iron’’, Analytical Chemistry. 42, 779-781.
  • Stricker, A.-E., Lossing, H., Gibson, J. H., Hong, Y., Urbanic, J. C. 2011. ‘’Pilot scale testing of a new configuration of the membrane aerated biofilm reactor (MABR) to treat high-strength industrial sewage’’, Water Environment Research 83 (1), 3–14.
  • Sun, J., Dai, X., Liu, Y., Peng, L. & Ni, B. J. 2017. ‘’Sulfide removal and sulfur production in a membrane aerated biofilm reactor: model evaluation’’, Chemical Engineering Journal 309, 454–462.
  • Sunner, N., Long, Z., Houweling, D., Monti, A. & Peeters, J. 2018. ‘’MABR as a low-energy compact solution for nutrient removal upgrades – results from a demonstration in the UK’’, Proceedings of the Water Environment Federation 2018 (16), 1264–1281.
  • Syron, E. ve Casey, E. 2008a. ‘’Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements’’, Environmental Science & Technology, 42(6), 1833–1844.
  • Syron, E. ve Casey, E. 2008b. ‘’Model-based comparative performance analysis of membrane aerated biofilm reactor configurations’’, Biotechnology and Bioengineering, 99(6), 1361–1373.
  • Syron, E., Semmens, M. J., Casey, E. 2015. ‘’Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate’’, Chemical Engineering Journal 273, 120–129.
  • Syron, E. ve Heffernan, B. 2017. ‘’Oxymem, The flexiable MABR’’, Proceedings of the Water Environment Federation, (3), 650–656.
  • Şahinkaya, E., Hasar, H., Kaksonen, A. H. & Rittmann, B. E. 2011. ‘’Performance of a sulfide- oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent’’ Environmental Science and Technology 45, 4080–4087.
  • Takase, S., Kimoto, A., Kusunoki, M., & Shimizu, Y. 2021. ‘’Investigation of the Effect of Hydrophilicity on Oxygen Reduction Reaction Property with Measurement of Water Vapor Specific Surface Area’’, Electrochemistry, 89 (6), 597-601.
  • Taşkan, B., Hasar, H., Lee, C-H. 2020.’’Effective biofilm control in a membrane biofilm reactor using a quenching bacterium (Rhodococcus sp. BH4)’’, Biotechnology and Bioengineering,117, 1012-1023.
  • Terada, A., Hibiya, K., Nagai, J., Tsuneda, S. & Hirata, A. 2003.’’ Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high- strength nitrogenous wastewater treatment’’, Journal of Bioscience and Bioengineering 95 (2), 170–178.
  • Tian, H., Hu, Y., Xu, X., Hui, M., Hu, Y., Qi, W., Xu, H. & Li, B. 2019. ‘’Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism’’, Bioresource Technology, 289 121649.
  • Tian, H., Xu, X., Qu, J., Li, H., Hu, Y., Huang, L., He, W. & Li, B. 2020. ‘’Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes’’, Journal of Hazardous Materials, 392, 122463.
  • Torresi, E., Fowler, S.J., Polesel, F., Bester, K., Andersen, H.R., Smets, B.F., Plosz, B.G., Christensson, M. 2016. ‘’Biofilm thickness influences biodiversity in nitrifying MBBRs- implications on micropollutant removal’, Environmental Science and Technology, 50 (17), 9279–9288.
  • Türken, T., Sengur-Tasdemir, R., Koseoglu-Imer, D. Y., Koyuncu, I. 2015. ‘’Determination of filtration performances of nanocomposite hollow fiber membranes with silver nanoparticles’’, Environmental Engineering Science, 32(8), 656-665.
  • Underwood, A., McMains, C., Coutts, D., Peeters, J., Ireland, J. & Houweling, D. 2018. ‘’Design and startup of the first full-scale membrane aerated biofilm reactor in the United States’’ Proceedings of the Water Environment Federation, (16), 1282–1296.
  • Wang, C.B., Zhang, W.X., 1997. ‘’Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCB’’. Environmental Science Technology, 31, 2154–2156.
  • Wang, J., Liu, G. F., Lu, H., Jin, R. F., Zhou, J. T. & Lei, T. M. 2012a. ‘’Biodegradation of Acid Orange 7 and its auto-oxidative decolorization product in membrane-aerated biofilm reactor’’, International Biodeterioration and Biodegradation 67, 73–77.
  • Wang, T., Ni, M., Luo, Z., Shou, C., & Cen, K. 2012b. ‘’Viscosity and aggregation structure of nanocolloidal dispersions’’, Chinese Science Bulletin, 57, 3644-3651.
  • Wang, B., Li, H., Liu, T., Guo, J. 2021. ‘’Enhanced removal of cephalexin and sulfadiazine in nitriyfing membrane-aerated biofim reactos’’, Chemosphere, 263, 128224.
  • Wei, X., Li, B., Zhao, S., Wang, L., Zhang, H., Li, C., Wang, S. 2012. ‘’Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system–a pilot- scale study’’, Bioresource Technology, 122, 189–195.
  • Wilderer, P.A., Brautigam, J., Sekoulov, I., 1985. ‘’Application of gas permeable membranes for auxiliary oxygenation of sequencing batch reactors’’, Conservation Recycling 8, 181–192.
  • Wu, Y., Wu, Z., Chu, H., Li, J., Ngo, H. H., Guo, W., ... & Zhang, H. (2019). Comparison study on the performance of two different gas-permeable membranes used in a membrane-aerated biofilm reactor. Science of the Total Environment, 658, 1219-1227.
  • Xiang, S., Liu, Y., Zhang, G., Ruan, R., Cao, L., 2020. ‘’New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters’’, World Journal of Microbiology Biotechnology, 36 (10), 144.
  • Xiao, P., Zhou, J., Luo, X., Kang, B., Guo, L., Yuan, G., ... & Zhao, T. 2021. ‘’Enhanced nitrogen removal from high-strength ammonium wastewater by improving heterotrophic nitrification- aerobic denitrification process: insight into the influence of dissolved oxygen in the outer layer of the biofilm’’, Journal of Cleaner Production, 297, 126658.
  • Xu, L., Wang, J. (2011). ‘’A heteregeneous Fenton-like system with nanopaticulate zero-valent iron for removal of 4 chloro-3-methyl phenol’’, Journal of Hazardous Materials, 186, 256-264.
  • Yang, C., Li, K., Xu, L., Wang, Z., Yu, L., & Wang, J. 2022. ‘’Reduction of nitrobenzene by a zero-valent iron microspheres/polyvinylidene fluoride (mZVI/PVDF) membrane’’, Separation and Purification Technology, 282, 120006.
  • Yu, Z., Li, X., & Guo, J. (2022). Combat antimicrobial resistance emergence and biofilm formation through nanoscale zero-valent iron particles. Chemical Engineering Journal, 444, 136569.
  • Zeng, M., Yang, J., Wang, H., Wang, C., Wu, N., Zhang, W., & Yang, H. 2020. ‘’Application of a composite membrane aerated biofilm with controllable biofilm thickness in nitrogen removal’’, Journal of Chemical Technology & Biotechnology, 95 (3), 875-884.
  • Zhang Y, Li T, Qiang Z, Liu J and Yin X. 2011. ‘’ Current research progress on the membrane- aerated biofilm reactor (MABR): a review’’, Acta Science Circumstance 31,1133–1143.
  • Zhao, J., Li, F., Cao, Y., Zhang, X., Chen, T., et al., 2020. ‘’Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms’’. Biotechnology Advances, 53, 107682.
  • Zhou, LJ., Zhuang, WQ., Wang, X., Yu, K., Yang, SF., Xia, SQ. 2017. ‘’ Potential effects of loading nano zero valent iron discharged on membrane fouling in an anoxic/oxic membrane bioreactor’’, Water Research, 111, 140-146.
APA HANAY Ö, ÇELİK A, aksoy y, SAKA A (2023). Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. , 0 - 78. 121Y574
Chicago HANAY ÖZGE,ÇELİK Aytekin,aksoy yunus,SAKA AYŞE Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. (2023): 0 - 78. 121Y574
MLA HANAY ÖZGE,ÇELİK Aytekin,aksoy yunus,SAKA AYŞE Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. , 2023, ss.0 - 78. 121Y574
AMA HANAY Ö,ÇELİK A,aksoy y,SAKA A Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. . 2023; 0 - 78. 121Y574
Vancouver HANAY Ö,ÇELİK A,aksoy y,SAKA A Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. . 2023; 0 - 78. 121Y574
IEEE HANAY Ö,ÇELİK A,aksoy y,SAKA A "Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü." , ss.0 - 78, 2023. 121Y574
ISNAD HANAY, ÖZGE vd. "Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü". (2023), 0-78. https://doi.org/121Y574
APA HANAY Ö, ÇELİK A, aksoy y, SAKA A (2023). Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. , 0 - 78. 121Y574
Chicago HANAY ÖZGE,ÇELİK Aytekin,aksoy yunus,SAKA AYŞE Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. (2023): 0 - 78. 121Y574
MLA HANAY ÖZGE,ÇELİK Aytekin,aksoy yunus,SAKA AYŞE Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. , 2023, ss.0 - 78. 121Y574
AMA HANAY Ö,ÇELİK A,aksoy y,SAKA A Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. . 2023; 0 - 78. 121Y574
Vancouver HANAY Ö,ÇELİK A,aksoy y,SAKA A Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü. . 2023; 0 - 78. 121Y574
IEEE HANAY Ö,ÇELİK A,aksoy y,SAKA A "Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü." , ss.0 - 78, 2023. 121Y574
ISNAD HANAY, ÖZGE vd. "Sıfır Değerlikli Nano Demir Bazlı Oksijen Gaz Transfer Membranında Biyofilm Kalınlığının Kontrolü". (2023), 0-78. https://doi.org/121Y574