Yıl: 2024 Cilt: 27 Sayı: 2 Sayfa Aralığı: 721 - 729 Metin Dili: İngilizce DOI: 10.2339/politeknik.1028437 İndeks Tarihi: 02-05-2024

Determination of Design Criteria for Composite Drive Shaft in Automobiles

Öz:
Thanks to their superior properties such as light weight, higher strength and stiffness, corrosion resistance, the use of plastic matrix composites become attractive in many applications. The weight reduction in the automotive sector is one of these applications. By use of plastic matrix composites, weight and CO2 emission reduction in automobiles could be achieved easily. In this study, carbon fiber and epoxy matrix were processed via filament winding method to produce composite drive shaft. Prior to production, finite element modeling were performed to determine the safest design parameters. Various winding angles were analyzed under torsional loading and number of layer was determined according to the failure index and strength ratio criteria. As a result of the numerical analysis, it was seen that the design with the minimum cost in terms of strength was the 10-layer model with a winding angle of +/- 45 degrees. To validate the design, the composite shaft was produced with the determined configurations and tested. The fiber volume fraction and the void content of the produced composite were found as ~46% was ~0.28%, respectively. No plastic deformation was observed in the torsion test. In the flattening and drift-expansion tests, plastic deformation occurred at 39 kN and 106.5 kN, respectively. Compared with a steel shaft, the obtained composite shaft has an 80% reduction in weight, and this could lead to a 1% fuel saving in passenger vehicles.  
Anahtar Kelime: composite drive shaft CO2 emission filament winding weight reduction

Otomobillerdeki Kompozit Şaft için Tasarım Kriterleri Belirlenmesi

Öz:
Hafiflik, yüksek mukavemet ve rijitlik, korozyon direnci gibi üstün özellikleri sayesinde plastik matrisli kompozitlerin kullanımı birçok uygulama için cazip hale gelmektedir. Otomotiv sektöründeki ağırlık azaltma çalışmaları da bu uygulamalardan biridir. Plastik matrisli kompozitlerin kullanımı ile otomobillerde ağırlığın ve CO2 emisyonunun azaltılması kolaylıkla sağlanabilmektedir. Bu çalışmada, kompozit şaft üretimi karbon fiber ve epoksi matris ile elyaf sarma yöntemiyle gerçekleştirilmiştir. Üretimden önce, en güvenli tasarım parametrelerini belirlemek için sonlu elemanlar modellemesi yapılmıştır. Burulma yüklemesi altında çeşitli sarım açıları analiz edilmiş ve kırılma indeksi ve mukavemet oranı kriterlerine göre tabaka sayısı belirlenmiştir. Sayısal analiz sonucunda, mukavemet açısından minimum maliyetli tasarımın +/- 45 derece sarım açısına sahip 10 katlı model olduğu görülmüştür. Tasarımı doğrulamak için kompozit şaft belirlenen konfigürasyonlarla üretilmiş ve test edilmiştir. Üretilen kompozitin fiber hacim oranı ve boşluk içeriği sırasıyla ~%46 ve ~%0.28 olarak bulunmuştur. Burulma testinde herhangi bir plastik deformasyon gözlenmemiştir. Yassılaşma ve sürüklenme-genleşme testlerinde sırasıyla 39 kN ve 106,5 kN'de plastik deformasyon meydana gelmiştir. Elde edilen kompozit şaft, çelik şafta göre %80 daha hafiftir ve bu binek araçlarda %1 yakıt tasarrufu sağlayabilir.  
Anahtar Kelime: kompozit şaft CO2 emisyonu elyaf sarma ağırlık azaltma

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • [1] Baycan N. and Zengin T.O., “Determination of carbon footprint of automobile origin in İzmir city”, IOP Conf. Ser.: Earth Environ. Sci., 642: 012015, (2021).
  • [2] Mikhaylov A., Moiseev N., Aleshin K. and Burkhardt T., “Global climate change and greenhouse effect”, Entrepreneurship and Sustainability Issues, 7(4): 2897- 2913, (2020).
  • [3] Albergel C., Calvet J. C., Gibelin A. L., Lafont S., Roujean J. L. and Berne C., “Observed and modelled ecosystem respiration and gross primary production of a grassland in southwestern France”, Biogeosciences, 7(5): 1657-1668, (2010).
  • [4] Yoro K. O. and Daramola M. O., “CO2 emission sources, greenhouse gases, and the global warming effect”, Advances in carbon capture: methods, technologies and applications, Woodhead Publishing, Duxford, (2020).
  • [5] L. Kutlu, “Greenhouse Gas Emission Efficiencies of World Countries”, Int. J. Environ. Res. Public Health, 17(23), 8771, (2020).
  • [6] www.iea.org/news/global-carbon-dioxide-emissions-are- set-for-their-second-biggest-increase-in-history, “The International Energy Agency’s Global Energy Review, (2021).
  • [7] Rashdan M. A., Zubi M. A. and Okour M. A., “Effect of Using New Technology Vehicles on the World’s Environment and Petroleum Resources”, Journal of Ecological Engineering, 20(1): 16–24, (2019).
  • [8] Environmental Protection Agency Report, “Overview of Greenhouse Gases”, EPA, United States, (2017).
  • [9] Akhshik M., Panthapulakkal S., Tjong J. et al., “The effect of lightweighting on greenhouse gas emissions and life cycle energy for automotive composite parts”, Clean Techn. Environ. Policy, 21: 625–636, (2019).
  • [10] Environmental Protection Agency Report, “U.S.Transportation Sector Greenhouse Gas Emissions 1990 –2016”, EPA, United States, (2018).
  • [11] Fontaras G., Zacharof N.-G. and Ciuffo B., “Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions”, Progress in Energy and Combustion Science, 60: 97- 131, (2017).
  • [12] Smokers R., Fraga F. and Verbeek M., “Support for the revision of regulation (EC) No 443/2009 on CO2 emissions from cars”, Serv. Req., (2011).
  • [13] European Commission, “Reducing CO2 emissions from passenger cars—European Commission”, EC Climate Policy, (2016).
  • [14] Chougule V., Gupta A. and Chavan S., “Design and manufacturing of carbon fiber composite drive shaft as an alternative to conventional steel drive shaft'', International Journal of Innovative Science and Research Technology, 3(10): 674-683, (2018).
  • [15] Bolshikh A., “Computational and experimental study of the strength of a composite drive shaft”, Transport Problems, 16(1): 75-86, (2021).
  • [16] Mohamad M. L., Rahman M. T. A., Khan S. F., Basha M. H., Adom A. H. and Hashim M. S. M., “Design and static structural analysis of a race car chassis for Formula Society of Automotive Engineers (FSAE) event”, J. Phys.: Conf. Ser., 908: 012042, (2017).
  • [17] Tariq M., Nisar S., Shah A. et al., “Effect of carbon fiber winding layer on torsional characteristics of filament wound composite shafts”, J Braz. Soc. Mech. Sci. Eng., 40: 198, (2018).
  • [18] Harris B., “A perspective view of composite materials development”, Mater. Des., 12(5): 259-272, (1991).
  • [19]www.sciencedirect.com/science/article/pii/S00343617008 00661 , “Composite golf shaft is more accurate”, Reinforced Plastics, 44(11): 6, (2000).
  • [20] Kim H. and, Lee D., “Design and manufacture of stainless steel/carbon epoxy hybrid shaft for cleaning large LCD glass panels”, Compos. Struct., 80(2): 279-289, (2007).
  • [21] Lee D., Yun Hwang H. and Kook Kim J., “Design and manufacture of a carbon fiber epoxy rotating boring bar”, Compos. Struct., 60(1): 115–124, (2003).
  • [22] Özdemir A. O., Karataş Ç. and Yücesu S., “Effect of Fiber Configuration on Mechanical Properties of Thermoplastic Composite Laminates”, Journal of Polytechnic, 24(2): 599-607, (2021).
  • [23] Farukoğlu Ö. C. and Korkut İ., “Analytical Solutions for Transversely Isotropic Fiber-Reinforced Composite Cylinders under Internal or External Pressure”, Journal of Polytechnic, 24(2): 663-672, (2021).
  • [24] Evran S., “Investigation of Effects of Fiber Orientation Angles on Deflection Behavior of Cantilever Laminated Composite Square Plates”, Journal of Polytechnic, 23(3): 633-639, (2020).
  • [25] Sun Z., Xiao J., Yu X., et al., “Vibration characteristics of carbon-fiber reinforced composite drive shafts fabricated using filament winding technology”, Compos. Struct., 241: 111725, (2020).
  • [26] Rafiee R., “On the mechanical performance of glass-fibre- reinforced thermosetting resin pipes: A review”, Compos. Struct., 143: 151-164, (2016).
  • [27] Eyer G., Montagnier O., Charles J. P. and Hochard C., “Design of a composite tube to analyze the compressive behavior of CFRP”, Compos. A Appl. Sci. Manuf., 87: 115-122, (2016).
  • [28] Rastogi N., “Design of composite drive shafts for automotive applications”, Visteon Corporation, SAE technical paper series, PA, USA, (2004).
  • [29] Karimi S., Salamat A. and Javadpour S., “Designing and optimizing of composite and hybrid drive shafts based on the bees algorithm”, J. Mech. Sci. Technol., 30(4): 1755- 1761, (2016).
  • [30] Hoa S. V., “Principles of the manufacturing of composite materials”, DEStech Publications, Lancaster, UK, (2009).
  • [31] Akovali G., “Handbook of composite fabrication”, iSmithers Rapra Publishing, London, UK, (2001).
  • [32] Shinde R. M. and Sawant S. M., “Investigation on glass- epoxy composite drive shaft for light motor vehicle”, Int. J. Design Engineering, 9(1): 22-35, (2019).
  • [33] Nayak S. Y., Amin N. M., Heckadka S. S., Shenoy P V., Prakash Ch. S. and Mabbu R., “Design, Fabrication and Testing of Carbon Fiber Reinforced Epoxy Drive Shaft for All Terrain Vehicle using Filament Winding”, MATEC Web of Conferences, 153: 04010, (2018).
  • [34] Tataroğlu S., Ok E., Kaya S., Şen A., Doğan V. Z., Mecitoğlu Z., Akay E., Süsler S., Türkmen H. S., “Design and Manufacturing of a Composite Drive Shaft”, Key Engineering Materials, 706: 73-77, (2016).
  • [35] Khoshravan M. R., Paykani A. and Akbarzadeh A., “Design and modal analysis of composite drive shaft for automotive application”, Int. J. Eng. Sci. Technol., 3(4): 2543-2549, (2011).
  • [36] Patil R. D. and Patel D. M., “Design & analysis of composite drive shaft for automobile”, Int. J. Novel Res. Dev., 4(1): 13-20, (2019).
  • [37] www.dowaksa.com/wp-content/uploads/2016/03/24K-A- 42.pdf, “DowAksa Technical Data Sheet”, (2022)
  • [38] www.duratek.com.tr/en/products/products-for- composites, “Duratek Technical Data Sheet”,(2022)
  • [39]http://company.metstrade.com/Duratek-Koruyucu-Mad-- San--ve-Tic--A-S- ?Language=EN&eventid=24137&account=00333643- 0, “Duratek Technical Data Sheet”, (2022)
  • [40] Mertiny P., Ellyin F., Hothan A., “An experimental investigation on the effect of multi-angle filament winding on the strength of tubular composite structures”, Composites Science and Technology, 64(1): 1-9, (2004).
  • [41] Bodake P. M. and Aher V. S., “Design and Analysis of Composite Drive Shaft”, International Journal for Research in Applied Science & Engineering Technology, 6: 1570-1576, (2018).
  • [42] www.mayahtt.com/blog/failure-index-vs-strength- ratio-in-a-quadratic/, “Failure Index vs Strength Ratio in a Quadratic Failure Criterion (Composite Materials)”, (2022).
  • [43] Stedile Filho P., Almeida Jr, J. H. S. and Amico S. C., “Carbon-epoxy filament wound composite drive shafts under torsion and compression”, J. Compos. Mater., 52(8):1103-1111, (2018).
  • [44] Rangaswamy T. and Vıjayarangan S., “Optimal Sizing and Stacking Sequence of Composite Drive Shafts”, Materials Science (Medžıagotyra), 11(2): 133-139, (2005).
  • [45] Hashim M. F. A.,. Ghazali C. M. R, Daud Y. M., et al., “Effect of winding speed in epoxy glass composites for new fabricated filament winding machine”, AIP Conference Proceedings, 2291, 020034 (2020)
APA ALTIN B, Altınbay Bekem A, Ünal A (2024). Determination of Design Criteria for Composite Drive Shaft in Automobiles. , 721 - 729. 10.2339/politeknik.1028437
Chicago ALTIN BEYTULLAH,Altınbay Bekem Aylin,Ünal Ahmet Determination of Design Criteria for Composite Drive Shaft in Automobiles. (2024): 721 - 729. 10.2339/politeknik.1028437
MLA ALTIN BEYTULLAH,Altınbay Bekem Aylin,Ünal Ahmet Determination of Design Criteria for Composite Drive Shaft in Automobiles. , 2024, ss.721 - 729. 10.2339/politeknik.1028437
AMA ALTIN B,Altınbay Bekem A,Ünal A Determination of Design Criteria for Composite Drive Shaft in Automobiles. . 2024; 721 - 729. 10.2339/politeknik.1028437
Vancouver ALTIN B,Altınbay Bekem A,Ünal A Determination of Design Criteria for Composite Drive Shaft in Automobiles. . 2024; 721 - 729. 10.2339/politeknik.1028437
IEEE ALTIN B,Altınbay Bekem A,Ünal A "Determination of Design Criteria for Composite Drive Shaft in Automobiles." , ss.721 - 729, 2024. 10.2339/politeknik.1028437
ISNAD ALTIN, BEYTULLAH vd. "Determination of Design Criteria for Composite Drive Shaft in Automobiles". (2024), 721-729. https://doi.org/10.2339/politeknik.1028437
APA ALTIN B, Altınbay Bekem A, Ünal A (2024). Determination of Design Criteria for Composite Drive Shaft in Automobiles. Politeknik Dergisi, 27(2), 721 - 729. 10.2339/politeknik.1028437
Chicago ALTIN BEYTULLAH,Altınbay Bekem Aylin,Ünal Ahmet Determination of Design Criteria for Composite Drive Shaft in Automobiles. Politeknik Dergisi 27, no.2 (2024): 721 - 729. 10.2339/politeknik.1028437
MLA ALTIN BEYTULLAH,Altınbay Bekem Aylin,Ünal Ahmet Determination of Design Criteria for Composite Drive Shaft in Automobiles. Politeknik Dergisi, vol.27, no.2, 2024, ss.721 - 729. 10.2339/politeknik.1028437
AMA ALTIN B,Altınbay Bekem A,Ünal A Determination of Design Criteria for Composite Drive Shaft in Automobiles. Politeknik Dergisi. 2024; 27(2): 721 - 729. 10.2339/politeknik.1028437
Vancouver ALTIN B,Altınbay Bekem A,Ünal A Determination of Design Criteria for Composite Drive Shaft in Automobiles. Politeknik Dergisi. 2024; 27(2): 721 - 729. 10.2339/politeknik.1028437
IEEE ALTIN B,Altınbay Bekem A,Ünal A "Determination of Design Criteria for Composite Drive Shaft in Automobiles." Politeknik Dergisi, 27, ss.721 - 729, 2024. 10.2339/politeknik.1028437
ISNAD ALTIN, BEYTULLAH vd. "Determination of Design Criteria for Composite Drive Shaft in Automobiles". Politeknik Dergisi 27/2 (2024), 721-729. https://doi.org/10.2339/politeknik.1028437