Yıl: 2024 Cilt: 35 Sayı: 2 Sayfa Aralığı: 102 - 111 Metin Dili: İngilizce DOI: 10.5152/tjg.2024.23063 İndeks Tarihi: 10-06-2024

Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients

Öz:
Background/Aims: The purpose of this study is to screen the feature genes related to gut microflora and explore the role of the genes in predicting the prognosis of patients with gastric cancer. Materials and Methods: We downloaded the gene profile of gastric cancer from the University of California Santa Cruz, the gut micro- flora related to gastric cancer from The Cancer Microbiome Atlas. The GSE62254 dataset was downloaded from National Center for Biotechnology Information Gene Expression Omnibus as a validation dataset. A correlation network between differentially expressed genes and gut microflora was constructed using Cytoscape. The optimized prognostic differentially expressed genes were identified through least absolute shrinkage and selection operator (LASSO) algorithm and univariate Cox regression analysis. The risk score model was established and then measured via Kaplan–Meier and area under the curve. Finally, the nomogram model was constructed accord- ing to the independent clinical factors, which was evaluated using C-index. Results: A total of 754 differentially expressed genes and 8 gut microflora were screened, based on which we successfully constructed the correlation network. We obtained 9 optimized prognostic differentially expressed genes, including HSD17B3, GNG7, CHAD, ARHGAP8, NOX1, YY2, GOLGA8A, DNASE1L3, and ABCA8. Moreover, Kaplan–Meier curves indicated the risk score model correctly predicted the prognosis of gastric cancer in both University of California Santa Cruz and GSE62254 dataset (area under the curve >0.8; area under the curve >0.7). Finally, we constructed the nomogram, in which the C index of 1, 3, and 5 years was 0.824, 0.772, and 0.735 representing that the nomogram was consistent with the actual situation. Conclusions: These results indicate the 9 differentially expressed genes related to gut microflora might predict the survival time of patients with gastric cancer. Both risk signature and nomogram could effectively predict the prognosis for patients with gastric cancer.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. Ilic M, Ilic I. Epidemiology of gastric cancer. World J Gastroenterol. 2022;28(12):1187-1203. [CrossRef]
  • 2. Tan Z. Recent advances in the surgical treatment of advanced gastric cancer: a review. Med Sci Monit. 2019;25:3537-3541. [CrossRef]
  • 3. Smith JW, Brennan MF. Surgical treatment of gastric cancer. Prox- imal, mid, and distal stomach. Surg Clin North Am. 1992;72(2):381- 399. [CrossRef]
  • 4. Lavacchi D, Fancelli S, Buttitta E, et al. Perioperative tailored treatments for gastric cancer: times are changing. Int J Mol Sci. 2023;24(5). [CrossRef]
  • 5. Fontes-Lemus JI, Zhao I, Rabkin CS, Fuentes-Pananá EM. Antibod- ies against Epstein-Barr virus as disease markers of gastric cancer: a systematic review. Technol Cancer Res Treat. 2023;22. [CrossRef]
  • 6. Zhou Y, Dong L, Dai L, et al. Pathologic complete response of hepatoid adenocarcinoma of the stomach after chemo-immuno- therapy: a rare case report and literature review. Front Surg. 2023;10:1133335. [CrossRef]
  • 7. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes. 2018;9(4):1- 18. [CrossRef]
  • 8. Wang G, Huang S, Wang Y, et al. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci. 2019;76(20):3917- 3937. [CrossRef]
  • 9. Zhou B, Yuan Y, Zhang S, et al. Intestinal flora and disease mutu- ally shape the regional immune system in the intestinal tract. Front Immunol. 2020;11:575. [CrossRef]
  • 10. Robinson KM, Crabtree J, Mattick JSA, Anderson KE, Dunning Hotopp JC. Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. Microbiome. 2017;5(1):9. [CrossRef]
  • 11. Peng Z, Cheng S, Kou Y, et al. The gut microbiome is associated with clinical response to anti-PD-1/PD-L1 immunotherapy in gastro- intestinal cancer. Cancer Immunol Res. 2020;8(10):1251-1261. [CrossRef]
  • 12. Lau HCH, Sung JJ, Yu J. Gut microbiota: impacts on gastrointes- tinal cancer immunotherapy. Gut Microbes. 2021;13(1):1-21.
  • 13. Sun J, Tang Q, Yu S, et al. Role of the oral microbiota in cancer evolution and progression. Cancer Med. 2020;9(17):6306-6321. [CrossRef]
  • 14. O’Keefe SJD. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13(12):691-706. [CrossRef]
  • 15. Ai B, Mei Y, Liang D, Wang T, Cai H, Yu D. Uncovering the special microbiota associated with occurrence and progression of gastric cancer by using RNA-sequencing. Sci Rep. 2023;13(1):5722. [CrossRef]
  • 16. Li Y, Hu Y, Zhan X, et al. Meta-analysis reveals Helicobacter pylori mutual exclusivity and reproducible gastric microbiome alterations during gastric carcinoma progression. Gut Microbes. 2023;15(1):2197835. [CrossRef]
  • 17. Dohlman AB, Arguijo Mendoza D, Ding S, et al. The cancer micro- biome atlas: a pan-cancer comparative analysis to distinguish tis- sue-resident microbiota from contaminants. Cell Host Microbe. 2021;29(2):281-298.e5. [CrossRef]
  • 18. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207-210. [CrossRef]
  • 19. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. [CrossRef]
  • 20. Wang L, Cao C, Ma Q, et al. RNA-seq analyses of multiple mer- istems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol. 2014;14(1):169. [CrossRef]
  • 21. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95(25):14863-14868. [CrossRef]
  • 22. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software envi- ronment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504. [CrossRef]
  • 23. Huang DW, Sherman BT, Lempicki RA. Systematic and integra- tive analysis of large gene lists using David bioinformatics resources. Nat Protoc. 2009;4(1):44-57. [CrossRef]
  • 24. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13. [CrossRef]
  • 25. Wang P, Wang Y, Hang B, Zou X, Mao JH. A novel gene expres- sion-based prognostic scoring system to predict survival in gastric cancer. Oncotarget. 2016;7(34):55343-55351. [CrossRef]
  • 26. Goeman JJ. L1 penalized estimation in the Cox proportional haz- ards model. Biom J Biom Z. 2010;52(1):70-84.
  • 27. Zhang JA, Zhou XY, Huang D, et al. Development of an immune- related gene signature for prognosis in melanoma. Front Oncol. 2020;10:602555. [CrossRef]
  • 28. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385-395. [CrossRef]
  • 29. Shan S, Chen W, Jia JD. Transcriptome analysis revealed a highly connected gene module associated with cirrhosis to hepa- tocellular carcinoma development. Front Genet. 2019;10:305. [CrossRef]
  • 30. Harrell FE, Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361-387. [CrossRef]
  • 31. Mayr A, Schmid M. Boosting the concordance index for survival data – a unified framework to derive and evaluate biomarker com- binations. PLoS One. 2014;9(1):e84483. [CrossRef]
  • 32. Nikniaz Z, Somi MH, Nagashi S, Nikniaz L. Impact of early enteral nutrition on nutritional and immunological outcomes of gastric can- cer patients undergoing gastrostomy: a systematic review and meta-analysis. Nutr Cancer. 2017;69(5):693-701. [CrossRef]
  • 33. Hsieh YY, Tung SY, Pan HY, et al. Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci Rep. 2018;8(1):158. [CrossRef]
  • 34. Stewart OA, Wu F, Chen Y. The role of gastric microbiota in gas- tric cancer. Gut Microbes. 2020;11(5):1220-1230. [CrossRef]
  • 35. Yu G, Torres J, Hu N, et al. Molecular characterization of the human stomach microbiota in gastric cancer patients. Front Cell Infect Microbiol. 2017;7:302. [CrossRef]
  • 36. Guo Y, Zhang Y, Gerhard M, et al. Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high- risk area of gastric cancer. Gut. 2020;69(9):1598-1607. [CrossRef]
  • 37. Park JY, Seo H, Kang CS, et al. Dysbiotic change in gastric micro- biome and its functional implication in gastric carcinogenesis. Sci Rep. 2022;12(1):4285. [CrossRef]
  • 38. Liu D, Chen S, Gou Y, et al. Gastrointestinal microbiota changes in patients with gastric precancerous lesions. Front Cell Infect Micro- biol. 2021;11:749207. [CrossRef]
  • 39. Dai D, Yang Y, Yu J, et al. Interactions between gastric microbiota and metabolites in gastric cancer. Cell Death Dis. 2021;12(12):1104. [CrossRef]
  • 40. Guo Y, Wang ZW, Su WH, Chen J, Wang YL. Prognostic value and immune infiltrates of ABCA8 and FABP4 in stomach adenocarci- noma. BioMed Res Int. 2020;2020:1-12. [CrossRef]
  • 41. Deng Z, Xiao M, Du D, et al. DNASE1L3 as a prognostic biomarker associated with immune cell infiltration in cancer. Onco Targets Ther. 2021;14:2003-2017. [CrossRef]
  • 42. In H, Solsky I, Palis B, Langdon-Embry M, Ajani J, Sano T. Valida- tion of the 8th edition of the AJCC TNM staging system for gastric cancer using the national cancer database. Ann Surg Oncol. 2017;24(12):3683-3691. [CrossRef]
  • 43. Li J, Yu T, Sun J, et al. Comprehensive analysis of cuproptosis- related immune biomarker signature to enhance prognostic accu- racy in gastric cancer. Aging. 2023;15(7):2772-2796. [CrossRef]
APA YUE Q, Han W, Liu Z (2024). Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. , 102 - 111. 10.5152/tjg.2024.23063
Chicago YUE QING,Han Wei,Liu Zling Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. (2024): 102 - 111. 10.5152/tjg.2024.23063
MLA YUE QING,Han Wei,Liu Zling Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. , 2024, ss.102 - 111. 10.5152/tjg.2024.23063
AMA YUE Q,Han W,Liu Z Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. . 2024; 102 - 111. 10.5152/tjg.2024.23063
Vancouver YUE Q,Han W,Liu Z Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. . 2024; 102 - 111. 10.5152/tjg.2024.23063
IEEE YUE Q,Han W,Liu Z "Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients." , ss.102 - 111, 2024. 10.5152/tjg.2024.23063
ISNAD YUE, QING vd. "Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients". (2024), 102-111. https://doi.org/10.5152/tjg.2024.23063
APA YUE Q, Han W, Liu Z (2024). Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. Turkish Journal of Gastroenterology, 35(2), 102 - 111. 10.5152/tjg.2024.23063
Chicago YUE QING,Han Wei,Liu Zling Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. Turkish Journal of Gastroenterology 35, no.2 (2024): 102 - 111. 10.5152/tjg.2024.23063
MLA YUE QING,Han Wei,Liu Zling Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. Turkish Journal of Gastroenterology, vol.35, no.2, 2024, ss.102 - 111. 10.5152/tjg.2024.23063
AMA YUE Q,Han W,Liu Z Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. Turkish Journal of Gastroenterology. 2024; 35(2): 102 - 111. 10.5152/tjg.2024.23063
Vancouver YUE Q,Han W,Liu Z Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. Turkish Journal of Gastroenterology. 2024; 35(2): 102 - 111. 10.5152/tjg.2024.23063
IEEE YUE Q,Han W,Liu Z "Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients." Turkish Journal of Gastroenterology, 35, ss.102 - 111, 2024. 10.5152/tjg.2024.23063
ISNAD YUE, QING vd. "Nine-Gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients". Turkish Journal of Gastroenterology 35/2 (2024), 102-111. https://doi.org/10.5152/tjg.2024.23063