Yıl: 2024 Cilt: 52 Sayı: 2 Sayfa Aralığı: 49 - 53 Metin Dili: İngilizce DOI: 10.4274/TJAR.2024.241557 İndeks Tarihi: 11-06-2024

Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?

Öz:
For patients monitored in intensive care units in the aftermath of a cardiac arrest, one of the well-established difficulties of care after resuscitation is the ability to perform the necessary prognostic assessments as accurately and early as possible. Although current guidelines include algorithms to determine prognosis, there are still missing links and uncertainties. Biomarkers obtained from peripheral blood are generally non-invasive and easy to obtain. Although the potential to use microRNA as a prognostic biomarker after cardiac arrest has received less interest recently, its popularity has increased in the last few years. By identifying prognostic biomarkers within 24 h of cardiac arrest, clinicians in intensive care could gain valuable insights to guide patient outcomes and predict both mortality and survival rates.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
0
0
0
  • 1. Gilje P, Gidlöf O, Rundgren M, et.al. The brain-enriched microRNA miR- 124 in plasma predicts neurological outcome after cardiac arrest. Crit Care. 2014;18(2):R40. [CrossRef]
  • 2. Jing W, Tuxiu X, Xiaobing L, et.al. LncRNA GAS5/miR-137 Is a Hypoxia- Responsive Axis Involved in Cardiac Arrest and Cardiopulmonary Cerebral Resuscitation. Front Immunol. 2022;12:790750. [CrossRef]
  • 3. Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113-119. [CrossRef]
  • 4. Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301-307. [CrossRef]
  • 5. Rundgren M, Friberg H, Cronberg T, Romner B, Petzold A. Serial soluble neurofilament heavy chain in plasma as a marker of brain injury after cardiac arrest. Crit Care. 2012;16(2):R45. [CrossRef]
  • 6. Cronberg T, Brizzi M, Liedholm LJ, et al. Neurological prognostication after cardiac arrest--recommendations from the Swedish Resuscitation Council. Resuscitation. 2013;84(7):867-872. [CrossRef]
  • 7. Nolan JP, Sandroni C, Böttiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post- resuscitation care. Intensive Care Med. 2021;47(4):369-421. [CrossRef]
  • 8. Devaux Y, Stammet P, Friberg H, et al. MicroRNAs: new biomarkers and therapeutic targets after cardiac arrest? Crit Care. 2015;19(1):54. [CrossRef]
  • 9. Arrich J; European Resuscitation Council Hypothermia After Cardiac Arrest Registry Study Group. Clinical application of mild therapeutic hypothermia after cardiac arrest. Crit Care Med. 2007;35(4):1041-1047. [CrossRef]
  • 10. Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S; Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67(2):203-210. [CrossRef]
  • 11. Oksanen T, Tiainen M, Skrifvars MB, et al. Predictive power of serum NSE and OHCA score regarding 6-month neurologic outcome after out-of- hospital ventricular fibrillation and therapeutic hypothermia. Resuscitation. 2009;80(2):165-170. [CrossRef]
  • 12. Rundgren M, Karlsson T, Nielsen N, Cronberg T, Johnsson P, Friberg H. Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation. 2009;80(7):784-789. [CrossRef]
  • 13. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853-858. [CrossRef]
  • 14. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858-862. [CrossRef]
  • 15. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294(5543):862-864. [CrossRef]
  • 16. Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148. [CrossRef]
  • 17. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513-10518. [CrossRef]
  • 18. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835- 840. [CrossRef]
  • 19. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350- 355. [CrossRef]
  • 20. Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol. 2009;6(6):419-429. [CrossRef]
  • 21. Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006 Dec;7(12):911-20. [CrossRef]
  • 22. Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13(8):528- 541. [CrossRef]
  • 23. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110(3):483-495. [CrossRef]
  • 24. Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51(5):872-875. [CrossRef]
  • 25. Eitel I, Adams V, Dieterich P, et al. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am Heart J. 2012;164(5):706-714. [CrossRef]
  • 26. Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 2013;113(3):322-326. [CrossRef]
  • 27. Devaux Y, McCann GP, Wagner DR, Squire IB. Prognostic microRNAs after AMI. Circ Res. 2013;113(5):e46-e47. [CrossRef]
  • 28. Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277(2):260-271. [CrossRef]
  • 29. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259-269. [CrossRef]
  • 30. Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet. 2012;3:222. [CrossRef]
  • 31. Hunsberger JG, Fessler EB, Wang Z, Elkahloun AG, Chuang DM. Post-insult valproic acid-regulated microRNAs: potential targets for cerebral ischemia. Am J Transl Res. 2012;4(3):316-332. [CrossRef]
  • 32. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation. 2012;9:211. [CrossRef]
  • 33. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther. 2007;321(3):892-901. [CrossRef]
  • 34. Voorhees PM, Dees EC, O’Neil B, Orlowski RZ. The proteasome as a target for cancer therapy. Clin Cancer Res. 2003;9(17):6316-6325. [CrossRef]
  • 35. Zhang L, Chopp M, Liu X, et al. Combination therapy with VELCADE and tissue plasminogen activator is neuroprotective in aged rats after stroke and targets microRNA-146a and the toll-like receptor signaling pathway. Arterioscler Thromb Vasc Biol. 2012;32(8):1856-1864. [CrossRef]
  • 36. Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39(3):959-966. [CrossRef]
  • 37. Gan CS, Wang CW, Tan KS. Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res. 2012;11(1):147-152. [CrossRef]
  • 38. Tan KS, Armugam A, Sepramaniam S, et al. Expression profile of MicroRNAs in young stroke patients. PLoS One. 2009;4(11):e7689. [CrossRef]
  • 39. Zeng L, Liu J, Wang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed). 2011;3(4):1265-1272. [CrossRef]
  • 40. Stammet P, Goretti E, Vausort M, Zhang L, Wagner DR, Devaux Y. Circulating microRNAs after cardiac arrest. Crit Care Med. 2012;40(12):3209-3214. [CrossRef]
  • 41. Bhalala OG, Pan L, Sahni V, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci. 2012;32:17935–17947. [CrossRef]
  • 42. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166. [CrossRef]
  • 43. Lakhal S, Wood MJ. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays. 2011;33(10):737-741. [CrossRef]
  • 44. Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics. 2011;43(10):521-528. [CrossRef]
  • 45. Devaux Y, Dankiewicz J, Salgado-Somoza A, et al. Association of Circulating MicroRNA-124-3p Levels With Outcomes After Out-of-Hospital Cardiac Arrest: A Substudy of a Randomized Clinical Trial. JAMA Cardiol. 2016;1(3):305-313. [CrossRef]
  • 46. Devaux Y, Salgado-Somoza A, Dankiewicz J, et al. Incremental Value of Circulating MiR-122-5p to Predict Outcome after Out of Hospital Cardiac Arrest. Theranostics. 2017;7(10):2555-2564. [CrossRef]
  • 47. Sheinerman KS, Tsivinsky VG, Crawford F, Mullan MJ, Abdullah L, Umansky SR. Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY). 2012;4(9):590-605. [CrossRef]
  • 48. Stefanizzi FM, Nielse N, Zhang L, et al. Circulating Levels of Brain-Enriched MicroRNAs Correlate with Neuron Specific Enolase after Cardiac Arrest-A Substudy of the Target Temperature Management Trial. Int J Mol Sci. 2020;21(12):4353. [CrossRef]
APA Ozbilgin S, Gokmen N (2024). Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. , 49 - 53. 10.4274/TJAR.2024.241557
Chicago Ozbilgin Sule,Gokmen Necati Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. (2024): 49 - 53. 10.4274/TJAR.2024.241557
MLA Ozbilgin Sule,Gokmen Necati Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. , 2024, ss.49 - 53. 10.4274/TJAR.2024.241557
AMA Ozbilgin S,Gokmen N Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. . 2024; 49 - 53. 10.4274/TJAR.2024.241557
Vancouver Ozbilgin S,Gokmen N Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. . 2024; 49 - 53. 10.4274/TJAR.2024.241557
IEEE Ozbilgin S,Gokmen N "Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?." , ss.49 - 53, 2024. 10.4274/TJAR.2024.241557
ISNAD Ozbilgin, Sule - Gokmen, Necati. "Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?". (2024), 49-53. https://doi.org/10.4274/TJAR.2024.241557
APA Ozbilgin S, Gokmen N (2024). Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. Turkish Journal of Anaesthesiology and Reanimation, 52(2), 49 - 53. 10.4274/TJAR.2024.241557
Chicago Ozbilgin Sule,Gokmen Necati Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. Turkish Journal of Anaesthesiology and Reanimation 52, no.2 (2024): 49 - 53. 10.4274/TJAR.2024.241557
MLA Ozbilgin Sule,Gokmen Necati Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. Turkish Journal of Anaesthesiology and Reanimation, vol.52, no.2, 2024, ss.49 - 53. 10.4274/TJAR.2024.241557
AMA Ozbilgin S,Gokmen N Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. Turkish Journal of Anaesthesiology and Reanimation. 2024; 52(2): 49 - 53. 10.4274/TJAR.2024.241557
Vancouver Ozbilgin S,Gokmen N Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?. Turkish Journal of Anaesthesiology and Reanimation. 2024; 52(2): 49 - 53. 10.4274/TJAR.2024.241557
IEEE Ozbilgin S,Gokmen N "Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?." Turkish Journal of Anaesthesiology and Reanimation, 52, ss.49 - 53, 2024. 10.4274/TJAR.2024.241557
ISNAD Ozbilgin, Sule - Gokmen, Necati. "Could MicroRNA be Neurological Prognosis Biomarkers after Cardiac Arrest?". Turkish Journal of Anaesthesiology and Reanimation 52/2 (2024), 49-53. https://doi.org/10.4274/TJAR.2024.241557