Yıl: 2011 Cilt: 8 Sayı: 2 Sayfa Aralığı: 179 - 188 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Synthesis and anticancer activity of some bisquinoxaline derivatives

Öz:
Mevcut antikanser ajanlara karşı rezistans gelişimi, yeni antikanser ajanlar için bir araştırma alanı yaratmaktadır. Bununla birlikte, normal hücreler üzerinde etki göstermeden ya da en az etkiyle anormal hücrelerin çoğalmasını seçici olarak inhibe edebilecek yeni bir ajanın geliştirilmesi oldukça güçtür. Bu nedenle, kanser kemoterapisi medisinal kimyacılar için çok önemlidir ve çeşitli kanser tipleri üzerinde antikanser aktivite gösterme olasılığı bulunan yeni kemoterapötik ajanların geliştirilmesi üzerinde çalışmalar halen devam etmektedir. Bu noktadan hareketle, bu çalışmada bazı biskinoksalin türevleri sentezlenmiş ve HT-29 (kolon kanseri) ve MCF-7 (göğüs kanseri) hücre hatları üzerinde antikanser aktiviteleri için taranmıştır. Sentezlenen bileşiklerden bazıları (3e ve 3l) MCF-7 hücre hattı üzerinde önemli sitotoksisite ve DNA sentez inhibisyonu göstermiştir.
Anahtar Kelime:

Konular: Farmakoloji ve Eczacılık

Bazı biskinoksalin türevlerinin sentezleri ve antikanser aktiviteleri

Öz:
Resistance improvement against the existing anticancer agents creates a research area for new anticancer agents. Nevertheless, it is rather difficult to develop a new agent which can selectively inhibit the proliferation of abnormal cells with least or no affect on normal cells. Therefore, cancer chemotherapy is very important for medicinal chemists and the studies are still being carried on to develop new chemotherapeutic agents that are probable to indicate activity on various cancer types. Depending on this point, in this study some bisquinoxaline derivatives were synthesized and screened for their anticancer activity on HT-29 (colon carcinoma) and MCF-7(breast carcinoma) cell lines. Some of the synthesized compounds (3e and 3l) showed significant cytotoxicity and DNA synthesis inhibition on MCF-7 cell line.
Anahtar Kelime:

Konular: Farmakoloji ve Eczacılık
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. Filosa, R., Pedut, A., Caprariis, P., Saturnino, C., Festa, M., Petrella, A., Pau, A., “Synthesis and antiproliferative properties of N3/8-disubstituted 3,8-diazabicyclo[3.2.1]octane analogues of 3,8-bis[2-(3,4,5 trimethoxyphenyl)pyridin-4-yl]methyl-piperazine” Eur. J. Med. Chem., 42, 293-306, 2007.
  • 2. Caballero, J., Fernandez, M., “Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): Application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1)” Curr. Top Med. Chem., 8, 1580-1605, 2008.
  • 3. Parmar, V.S., Sharma, N.K, Husain, M., Watterson, A.C., Kumar, J., Samuelson, L.A., Cholli, A.L., Prasad, A.K., Kumar, A., Malhotra, S., Kumar, N., Jha, A., Singh, A., Singh, I., Himanshu, V.A., Shakil, N.A., Trikha, S., Mukherjee, S., Sharma, S.K., Singh, S.K., Kumar, A., Jha, H.N., Olsen, C.E., Stove, C.P., Bracke, M.E., Mareel, M.M., “Synthesis, characterization and in vitro anti-invasive activity screening of polyphenolic and heterocyclic compounds” Bioorg. Med. Chem., 11, 913-929, 2003.
  • 4. Savikin, K., Zdunic, G., Jankovic, T., Stanojkovic, T., Juranic, Z., Menkovic, N., “In vitro cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria” Nat. Prod. Res., 23, 1731-1739, 2009.
  • 5. Karikas, G.A., Schulpis, K.H., Reclos, G., Kokotos, G., “Measurement of molecular interaction of aspartame and its metabolites with DNA” Clin. Biochem., 31 405-407, 1998.
  • 6. Waring, M.J., Bailly, C., “The purine 2-amino group as a critical recognition element for binding of small molecules to DNA” Gene, 149, 69-79, 1994.
  • 7. Rehn, C., Pindur, U., “Model building and molecular mechanics calculations of mitoxantrone-deoxytetranucleotide complexes: Molecular foundations of DNA intercalation as cytostatic active principle” Monatsh. Chem., 127, 631-644, 1996.
  • 8. Baginski, M., Fogolari, F., Briggs, J.M., “Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA” J. Mol. Biol., 274, 253-267, 1997.
  • 9. Shui, X., Peek, M.E., Lipscomb, L.A., Wilkinson, A.P., Williams, L.D., Gao, M., Ogata, C., Roques, B.P., Garbay-Jaureguiberry, C., Wilkinson, A.P., Williams, L.D., “Effects of cationic charge on three-dimensional structures of intercalative complexes: structure of a bis-intercalated DNA complex solved by MAD phasing” Curr. Med. Chem., 7, 59-71, 2000.
  • 10. Neidle, S., “Principles of nucleic acid structure, 5. Principles of small molecule DNA recognition” pp. 132-203, Elsevier Inc. 2008. 11. Moore, M.H., Hunter, W.N., d'Estaintot, B.L., Kennard, O., “DNA-drug interactions. The crystal structure of d(CGATCG) complexed with daunomycin” J. Mol. Biol. 206, 693-705, 1989.
  • 12. Pindur, U., Haber, M., Sattler, K., “Antitumor active drugs as intercalators of deoxyribonucleic acid: Molecular models of intercalation complexes” J. Chem. Educ, 70, 263-272, 1993.
  • 13. Zhigang, L., Qing, Y., Xuhong, Q., “Synthesis, antitumor evaluation and DNA photocleaving activity of novel methylthiazonaphthalimides with aminoalkyl side chains” Bioorg. Med. Chem. Lett, 15, 3143-3146, 2005.
  • 14. Geierstanger, B., Wemmer D.E., “Complexes of the Minor Groove of DNA” Annu. Rev. Biophys. Biomol. Struct, 24, 463-493, 1995.
  • 15. Srinivas, Ch., Sai-Pavan-Kumar, Ch.N.S., Jayathirtha-Rao, V., Palaniappan, S., “Green approach for the synthesis of quinoxaline derivatives in water medium using reusable polyaniline-sulfate salt catalyst and sodium laurylsulfate” Catal. Lett, 121, 291-296, 2008.
  • 16. Ding, Z., Parchment, R.E., LoRusso, P.M., Zhou, J.Y., Li, J., Lawrence, T.S., Sun, Y., Wu, G.S., “The Investigational New Drug XK469 Induces G2-M Cell Cycle Arrest by p53-dependent and -independent Pathways ” Clin. Cancer Res., 7, 3336-3342, 2001.
  • 17. Rigas, J.R, Tong, W.P., Kris, M.G, Orazem, J.P., Young, C.W., Warrell, R.P, “Phase I clinical and pharmacological study of chloroquinoxaline sulphonamide” Cancer Res., 52, 6619-6623, 1992.
  • 18. Waring, M.J., Wakelin, L.P.G, “Echinomycin: a bifunctional intercalating antibiotic” Nature, 252, 653-657, 1974.
  • 19. Dell, A., Williams, D.H., Morris, H.R, Smith, G.A., Feeney, J., Roberts, G.C.K., “Structure revision of the antibiotic echinomycin” J. Am. Chem. Soc, 97, 2497-2502, 1975.
  • 20. Cheung, H.T., Feeney, J., Roberts, G.C.K., Williams, D.H., Ughetto, G, Waring, M.J., “The conformation of echinomycin in solution” J. Am. Chem. Soc, 100, 46-54, 1978.
  • 21. Basak, A., Dugas, H., “A synthetic bismethidium with a similar topology does not bind to DNA as a bisintercalator” Tetrahedron Lett., 27, 3-6, 1986.
  • 22. Dietrich, B., Diederichsen, U., “Synthesis of cyclopeptidic analogues of triostin A with quinoxalines or nucleobases as chromophores” Eur. J. Org. Chem., 147-153, 2005.
  • 23. Nakamura, H., Hironaka, Y., Kusumoto, Tadashi., “Organic electroluminescent device having metal-quinoxaline mixed cathode” Jpn. Kokai Tokkyo Koho, JP 07026255 A 19950127, 1995.
  • 24. Tiwari, L.D., Dutt, S., “Azine compounds derived from diaminobenzidine” P. Natl. A. Sci. India, 7, 58-64, 1937.
  • 25. Zeytinoglu, H., Incesu, Z., Baser, K.H.C., “Inhibition of DNA synthesis by Carvacrol in mouse myoblast cells bearing a human N-RAS oncogene” Phytomedicine, 10, 292-299, 2003.
  • 26. Cho, C.S., Oh, S.G, “Copper-catalyzed oxidative cyclization of a-hydroxyketones with o-phenylenediamines leading to quinoxalines” J. Mol. Cat. A: Chemical, 276, 205-210, 2007.
  • 27. Haldar, P., Dutta, B., Guin, J., Ray, J.K., “Uncatalyzed condensation between aryl-1,2-diamines and diethyl bromomalonate: A one-pot access to substituted ethyl 3-hydroxyquinoxaline-2-carboxylates” Tetrahedron Lett, 48, 5855-5857, 2007.
APA Işıkdağ İ, Özkay Y, İNCESU Z (2011). Synthesis and anticancer activity of some bisquinoxaline derivatives. , 179 - 188.
Chicago Işıkdağ İlhan,Özkay Yusuf,İNCESU Zerrin Synthesis and anticancer activity of some bisquinoxaline derivatives. (2011): 179 - 188.
MLA Işıkdağ İlhan,Özkay Yusuf,İNCESU Zerrin Synthesis and anticancer activity of some bisquinoxaline derivatives. , 2011, ss.179 - 188.
AMA Işıkdağ İ,Özkay Y,İNCESU Z Synthesis and anticancer activity of some bisquinoxaline derivatives. . 2011; 179 - 188.
Vancouver Işıkdağ İ,Özkay Y,İNCESU Z Synthesis and anticancer activity of some bisquinoxaline derivatives. . 2011; 179 - 188.
IEEE Işıkdağ İ,Özkay Y,İNCESU Z "Synthesis and anticancer activity of some bisquinoxaline derivatives." , ss.179 - 188, 2011.
ISNAD Işıkdağ, İlhan vd. "Synthesis and anticancer activity of some bisquinoxaline derivatives". (2011), 179-188.
APA Işıkdağ İ, Özkay Y, İNCESU Z (2011). Synthesis and anticancer activity of some bisquinoxaline derivatives. Turkish Journal of Pharmaceutical Sciences, 8(2), 179 - 188.
Chicago Işıkdağ İlhan,Özkay Yusuf,İNCESU Zerrin Synthesis and anticancer activity of some bisquinoxaline derivatives. Turkish Journal of Pharmaceutical Sciences 8, no.2 (2011): 179 - 188.
MLA Işıkdağ İlhan,Özkay Yusuf,İNCESU Zerrin Synthesis and anticancer activity of some bisquinoxaline derivatives. Turkish Journal of Pharmaceutical Sciences, vol.8, no.2, 2011, ss.179 - 188.
AMA Işıkdağ İ,Özkay Y,İNCESU Z Synthesis and anticancer activity of some bisquinoxaline derivatives. Turkish Journal of Pharmaceutical Sciences. 2011; 8(2): 179 - 188.
Vancouver Işıkdağ İ,Özkay Y,İNCESU Z Synthesis and anticancer activity of some bisquinoxaline derivatives. Turkish Journal of Pharmaceutical Sciences. 2011; 8(2): 179 - 188.
IEEE Işıkdağ İ,Özkay Y,İNCESU Z "Synthesis and anticancer activity of some bisquinoxaline derivatives." Turkish Journal of Pharmaceutical Sciences, 8, ss.179 - 188, 2011.
ISNAD Işıkdağ, İlhan vd. "Synthesis and anticancer activity of some bisquinoxaline derivatives". Turkish Journal of Pharmaceutical Sciences 8/2 (2011), 179-188.