Yıl: 2012 Cilt: 17 Sayı: 3 Sayfa Aralığı: 235 - 243 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Effect of slice step size on prediction of natural vibration properties of bone tissue

Öz:
Several vibration analysis procedures are used for determination of the levelof bone loss, status of implant stability, modal damping factor and numerous otherproperties of tissues. The detection methods of bone properties are to compare theresults of theoretical work with practical results. So, there are many options forprocessing of image data and establishing the finite element (FE) model thatdifferentiation of calculated outputs is inevitable. Uncertainty of outputs can lead tomistakes while mechanical parameters or behaviors of tissue are determined. In thisstudy, the effect of Micro-CT scanning intensity in connection with the reconstructionprocess on properties of the modal behavior of bone tissue were investigated. Resultshave shown that examined parameters have important effects on numerical values of thenatural frequencies and modal behaviors. Furthermore, it has been revealed thatnumerical values and mode shapes must be considered together for properlyunderstanding the natural vibration analysis of bone tissue.
Anahtar Kelime:

Konular: Matematik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. M. Cornelissen, P. Cornelissen, G. van der Perre, A.B. Christensen, F. Ammitzboll, C. Dyrbye, Assessment Of Tibial Stiffness By Vibration Testing In Situ – III. Identification Of Mode Shapes In Different Supporting Conditions, Journal of Biomechanics, 20, 333–342, 1986.
  • 2. M. Cornelissen, P. Cornelissen, G. van der Perre, A.B. Christensen, F. Ammitzboll, C. Dyrbye, Assessment Of Tibial Stiffness By Vibration Testing In Situ – II. Influence Of Soft Tissues, Joints And Fibula, Journal of Biomechanics, 19, 551–561, 1986.
  • 3. G. van der Perre, G. Lowet, Vibration, Sonic And Ultrasonic Wave Propagation Analysis For The Detection Of Osteoporosis, Clinical Rheumatology, 13, 45–53, 1994.
  • 4. G. van der Perre, G. Lowet, In-Vivo Assessment Of Bone Mechanical Properties By Vibration And Ultrasonic Wave Propagation Analysis, Bone, 18, 29– 35, 1996.
  • 5. G. Lowet, R. van Audekercke, G. van der Perre, P. Geusens, J. Dequeker, J. Lammens, The Relation Between Resonant Frequencies And Torsional Stiffness Of Long Bones In Vitro Validation Of A Simple Beam Model, Journal of Biomechanics, 26, 689–696, 1993.
  • 6. S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, C. R. Steel, Noninvasive Determination Of Bone Mechanical Properties Using Vibration Response: A Refined Model And Validation In Vivo, Journal of Biomechanics, 29, 91- 98, 1999.
  • 7. V.R. Singh, S. Yadav, V.P. Adya, Role Of Natural Frequency Of Bone As A Guide For Detection Of Bone Fracture Healing, Journal of Biomechanical Engineering, 11, 457-461, 1989.
  • 8. L. Nokes, W.J. Mintowt, I. Mackie, J.A. Fairclough, J. Williams, Direct and indirect determination of tibial natural frequency — A comparison of frequency domain analysis and Fast Fourier Transform, Journal of Biomedical Engineering, 6, 45-48,1984.
  • 9. G.E. Christopoulou, A. Stavropoulou, G. Anastassopoulos, S.D. Panteliou, E. Papadaki, N.K. Karamanos, E. Panagiotopoulos, Evaluation Of Modal Damping Factor As A Diagnostic Tool For Osteoporosis And Its Relation With Serum Osteocalcin And Collagen I N-Telopeptide For Monitoring The Efficacy Of Alendronate In Ovariectomized, Journal of Pharmaceutical and Biomedical Analysis, 41, 891–897, 2006.
  • 10. S. P. Kotha, C. A. De Paula, A. B. Mann, N. Guzelsu, High Frequency Ultrasound Prediction of Mechanical Properties of Cortical Bone with Varying Amount of Mineral Content, Ultrasound in Medicine and Biology, 34, 630-637, 2007.
  • 11. P. Mc Donnell, M.A.K. Liebschner, W. Tawackoli, P.E. Mc Hugh, Vibrational testing of trabecular bone architectures using rapid prototype models, Medical Engineering & Physics, 31, 108-115, 2009.
  • 12. B. Bediz, H. N. Özgüven, F. Korkusuz, Vibration Measurements Predict The Mechanical Properties Of Human Tibia, Clinical Biomechanics, 25, 365–371, 2010.
  • 13. D. Ulrich, B. Van Rietbergen, A. Laib, P. Ruegsegger, The Ability Of Three- Dimensional Structural Indices To Reflect Mechanical Aspects Of Trabecular Bone, Bone, 25, 55–60, 1999.
  • 14. A.M. Parfitt, Bone Histomorphometry: Standardization Of Nomenclature, Symbols And Units, Bone, 9, 67–69, 1988.
  • 15. Y. Chevalier, D. Pahr, H. Allmer, M. Charlebois, P. Zysset, Validation Of A Voxel- Based FE Method For Prediction Of The Uniaxial Apparent Modulus Of Human Trabecular Bone Using Macroscopic Mechanical Tests And Nanoindentation, Journal of Biomechanics, 40, 3333–3340, 2007.
  • 16. W. Sun, B. Starly, J. Nam, A. Darling, Bio-CAD Modeling And Its Applications In Computer-Aided Tissue Engineering, Computer-Aided Design, 37, 1097–1114, 2005.
  • 17. S.V.N. Jaecques, H. Van Oosterwyck, L. Muraru, T. Van Cleynenbreugel, E. De Smet, M. Wevers, Individualised, Micro CT-Based Finite Element Modelling As A Tool For Biomechanical Analysis Related To Tissue Engineering Of Bone, Biomaterials, 25, 1683–96, 2004.
  • 18. R.B.G. Breuls, B.G. Sengers, C.W.J. Oomens, C.V.C. Bouten, F.P.T. Baaijens. Predicting Local Cell Deformations In Engineered Tissue Constructs: A Multilevel finite Element Approach, Journal of Biomechanical Engineering,124, 198–207, 2002.
  • 19. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated Via Selective Laser Sintering, Biomaterials, 26, 4817–4827, 2005.
  • 20. T. Hara, E. Tanck, J. Homminga, R. Huiskes, The Influence Of Microcomputed Tomography Threshold Variations On The Assessment Of Structural And Mechanical Trabecular Bone Properties, Bone, 31, 107–109, 2002.
  • 21. G. Bevill, T. M. Keaven, Trabecular Bone Strength Predictions Using finite Element Analysis Of Micro-Scale Images At Limited Spatial Resolution, Bone, 44, 579–584, 2009.
  • 22. B. Cutler, J. Dorsey, L. Mcmillan, M. Müller, R. Jagnow, A Procedural Approach To Authoring Solid Models, ACM Transactions on Graphics, 302–311, 2002.
APA ALTINTAŞ G (2012). Effect of slice step size on prediction of natural vibration properties of bone tissue. , 235 - 243.
Chicago ALTINTAŞ GÖKHAN Effect of slice step size on prediction of natural vibration properties of bone tissue. (2012): 235 - 243.
MLA ALTINTAŞ GÖKHAN Effect of slice step size on prediction of natural vibration properties of bone tissue. , 2012, ss.235 - 243.
AMA ALTINTAŞ G Effect of slice step size on prediction of natural vibration properties of bone tissue. . 2012; 235 - 243.
Vancouver ALTINTAŞ G Effect of slice step size on prediction of natural vibration properties of bone tissue. . 2012; 235 - 243.
IEEE ALTINTAŞ G "Effect of slice step size on prediction of natural vibration properties of bone tissue." , ss.235 - 243, 2012.
ISNAD ALTINTAŞ, GÖKHAN. "Effect of slice step size on prediction of natural vibration properties of bone tissue". (2012), 235-243.
APA ALTINTAŞ G (2012). Effect of slice step size on prediction of natural vibration properties of bone tissue. Mathematical and Computational Applications, 17(3), 235 - 243.
Chicago ALTINTAŞ GÖKHAN Effect of slice step size on prediction of natural vibration properties of bone tissue. Mathematical and Computational Applications 17, no.3 (2012): 235 - 243.
MLA ALTINTAŞ GÖKHAN Effect of slice step size on prediction of natural vibration properties of bone tissue. Mathematical and Computational Applications, vol.17, no.3, 2012, ss.235 - 243.
AMA ALTINTAŞ G Effect of slice step size on prediction of natural vibration properties of bone tissue. Mathematical and Computational Applications. 2012; 17(3): 235 - 243.
Vancouver ALTINTAŞ G Effect of slice step size on prediction of natural vibration properties of bone tissue. Mathematical and Computational Applications. 2012; 17(3): 235 - 243.
IEEE ALTINTAŞ G "Effect of slice step size on prediction of natural vibration properties of bone tissue." Mathematical and Computational Applications, 17, ss.235 - 243, 2012.
ISNAD ALTINTAŞ, GÖKHAN. "Effect of slice step size on prediction of natural vibration properties of bone tissue". Mathematical and Computational Applications 17/3 (2012), 235-243.