Yıl: 2012 Cilt: 32 Sayı: 2 Sayfa Aralığı: 107 - 119 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Effects of air blowing on turbulent flow over a circular cylinder

Öz:
Bu çalışmada, Reynolds sayısı 20,000 iken iki-boyutlu (2B) silindir üzerindeki türbülanslı akış ve silindir üzerine yerleştirilen deliklerden hava üfleme ile bu akışın kontrolü sayısal olarak incelenmektedir. Hesaplamalı Akışkanlar Dinamiği (HAD) benzetimlerinde Zamana-bağlı Reynolds-Ortalamalı Navier-Stokes (URANS) denklemleri ve Spalart-Allmaras türbülans modeli kullanılmıştır. Kontrolsüz akış benzetimleri literatürde yer alan sürükleme katsayısı, Strouhal sayısı, silindir üzerindeki ortalama basınç katsayısı dağılımı ve silindir arkası alandaki ortalama hız dağılımı ile doğrulanmıştır. Silindirin üzerine yerleştirilen deliklerden hava üflemenin eyleyici olarak kullanılmasıyla akış kontrolü gerçekleştirilmiştir. Silindirin yüzeyine yerleştirilen dört adet delikten akış hızının %50’si büyüklüğünde bir hızla hava üflenmesi ile kontrolsüz duruma kıyasla sürükleme katsayısında %23 azalma görülmüştür. Ayrıca, silindirin arkasındaki yakın alan, HAD analizleri sonucunda elde edilen veri topluluğuna Dikgen Ayrıştırma Yöntemi (DAY) uygulanması ile detaylı olarak incelenmiştir. 2B akışa Hızlı Fourier Dönüşümü (HFD) filtrelemeli olarak anlık durum-tabanlı DAY uygulanmasıyla kontrolsüz ve kontrollü akışlar için akışın toplam enerjisinin %99’u yalnızca en yüksek enerjiye sahip iki kip ile gösterilmiştir. Bu kiplerde von Karman girdap yolu düzgün bir biçimde görülmektedir.
Anahtar Kelime:

Konular: Termodinamik

Hava üflemenin dairesel silindir üzerindeki türbülanslı akışa etkileri

Öz:
This study analyzes the flow over a two-dimensional (2D) circular cylinder at a turbulent Reynolds number of 20,000 and its control by air blowing from several slots located on the surface of the cylinder, computationally. CFD simulations are performed by using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations and Spalart-Allmaras turbulence model. Uncontrolled flow simulation results are validated using the experimental results available in literature for drag coefficient, Strouhal number, time-averaged pressure coefficient distribution on the circumference of the cylinder and mean velocity values at the downstream. Air blowing from several slots located on the cylinder is used as an actuator for forcing the flow. Blowing from four slots located on the circumference of the cylinder with a velocity magnitude of 50% of the free stream velocity yields a drag reduction of 23% compared to the uncontrolled case. Additionally, near wake region is further examined by application of Proper Orthogonal Decomposition (POD) technique. A Fast Fourier Transform (FFT) based spatial filtering procedure is employed in order to separate the effects of small-scale turbulent structures in the wake region. The FFT-filtered snapshot-based POD analysis shows that approximately 99% of the total energy of the flow can be represented by considering only the most energetic first two modes where the effects of von Karman vortex street can be seen appropriately both for uncontrolled and controlled flow cases.
Anahtar Kelime:

Konular: Termodinamik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Anderson, J. D., Fundamentals of Aerodynamics, (Second Ed.), McGraw Hill, New York, 1991.
  • ANSYS Fluent v12.0 Software Theory Guide (2009). Apacoglu, B., Paksoy A. and Aradag, S., CFD Analysis and Reduced Order Modeling of Uncontrolled and Controlled Laminar Flow over a Circular Cylinder, Engineering Applications of Computational Fluid Mechanics, 5(1), 67-82, 2011.
  • Aradag, S., Siegel, S., Seidel, J., Cohen, K. and McLaughlin, T., Filtered POD-Based Low-Dimensional Modeling of the Three-Dimensional (3D) Turbulent Flow Behind a Circular Cylinder. International Journal for Numerical Methods in Fluids, doi: 10.1002/fld.2238, 2010.
  • Aradag, S., Cohen, K., Seaver, C. and McLaughlin, T., Integrating CFD and Experiments for Undergraduate Research, Computer Applications in Engineering Education, doi: 10.1002/cae.20278, 2009.
  • Aradag, S., Unsteady Vortex Structure behind a Three Dimensional Turbulent Cylinder Wake, Journal of Thermal Science and Technology 29(1):91-98, 2009.
  • Attar, P. J., Dowell, E. H., White, J. R. and Thomas, J. P., Reduced Order Nonlinear System Identification Methodology, American Institute of Aeronautics and Astronautics Journal 44 (8), 1895-1904, 2006.
  • Aubry, N., Holmes, P., Lumley, J. and Stone, E., The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer, Journal of Fluid Mechanics 192, 115-173, 1988.
  • Berkooz, G., Holmes, P. and Lumley, J. (1996). Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, pp. 86-93,1996.
  • Cao, Y., Zhu, J., Luo, Z. and Navon, I., Reduced Order Modeling of the Upper Tropical Pacific Ocean Model Using Proper Orthogonal Decomposition, Computer and Mathematics with Applications 52 (8-9), 1373- 1386, 2006.
  • Chatterjee, A., An Introduction to the Proper Orthogonal Decomposition. Computational Science Section Tutorial, Department of Engineering Science and Mechanics, Penn State University, Pennsylvania, USA, 2000.
  • Cohen, K., Siegel, S. and McLaughlin T., A Heuristic Approach to Effective Sensor Placement for Modeling of a Cylinder Wake, Computers and Fluids 35, 103-120, 2006.
  • Connell, R. and Kulasiri, D. Modeling Velocity Structures in Turbulent Floods Using Proper Orthogonal Decomposition, International Congress on Modeling and Simulation, December 2005, Melbourne, Australia, 2005.
  • Dowell, E. H. and Hall, K. C., Modeling of Fluid Structure Interaction, Annual Review of Fluid Mechanics 33, 445-490, doi: 10.1146/annurev.fluid.33.1.445, 2001.
  • Frisch, U., Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, UK, 1995.
  • Gad-el-Hak, M., Flow Control; Passive, Active and Reactive Flow Management, Cambridge University Press, 2000.
  • Gamard, S. and George, W., Application of a ‘Slice’ Proper Orthogonal Decomposition to the Far Field of an Axisymmetric Turbulent Jet. Physics of Fluids 14(2515), doi: 10.1063/1.1471875, 2002.
  • Gillies, E. A., Low Dimensional Control of the Circular Cylinder Wake, Journal of Fluid Mechanics 371, 157- 178, doi: 10.1017/S0022112098002122, 1998.
  • Holmes, P., Lumley, J. L. and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, UK, 1996.
  • Instrumentation and Control: Process Control and Fundamentals (May 2010). See URL. http://www.scribd.com/doc/25313575/Process-Control- Fundamentals.
  • Johansson, P. B., George, W. and Woodward S. H., Proper Orthogonal Decomposition of an Axisymmetric Turbulent Wake behind a Disk, Physics of Fluids 14(2508), doi: 10.1063/1.1476301, 2002.
  • Kakac, S. and Yener, Y., Convective Heat Transfer, 2nd ed., CRC Press, 1994.
  • Kwok, K. C. S., Turbulence Effect on Flow Around Circular Cylinder, Journal of Engineering Mechanics 112, 1181-1197, 1986.
  • Lieu, T., Farhat, C. and Lesoinne, M., Reduced-Order Fluid/Structure Modeling of a Complete Aircraft Configuration, Computer Methods in Applied Mechanics and Engineering 195(41-43), 5730-5742, doi: 10.1016/j.cma.2005.08.026, 2006.
  • Lim, H., Lee, S., Flow Control of Circular Cylinders with Longitudinal Grooved Surfaces, American Institute of Aeronautics and Astronautics Journal 40(10), 2027- 2036, 2002.
  • Lumley, J. L., The Structure of Inhomogeneous Turbulent Flows, Atm. Turb. and Wave Prop., 1967.
  • Ma, X. and Karniadakis, G., A Low-Dimensional Model for Simulating Three-Dimensional Cylinder Flow, Journal of Fluid Mechanics 458, 181-190, 2002.
  • Mathelin, L., Bataille, F., Lallemand, A., Near Wake of a Circular Cylinder Submitted to Blowing – I Boundary Layers Evolution, International Journal of Heat and Mass Transfer 44, 3701-3708, 2005.
  • Newman, A. J., Model Reduction via the Karhunen- Loéve Expansion Part 2: Some Elementary Examples, Technical Report No. 96-33, Institute for Systems Research, 1996.
  • Norberg, C., Effects of Reynolds Number and a Low- Intensity Free Stream Turbulence on the Flow around a Circular Cylinder, Chalmers University of Technology, ISSN 02809265, 1987.
  • O'Donnell, B. J. and Helenbrook, B. T., Proper Orthogonal Decomposition and Incompressible Flow: An Application to Particle Modeling, Computers and Fluids 36(7), 1174-1186, 2007.
  • Ong, M. C., Utnes, T., Holmedal, L.E., Myrhaug, D., Pettersen, B., Numerical Simulation of Flow around a Smooth Circular Cylinder at very High Reynolds Numbers, Journal of Marine Structures 22(2):142-153, 2009.
  • Prazenica, R., Kudila, A. J. and Vignola, J. F., Spatial Filtering and Proper Orthogonal Decomposition of Scanning Laser Doppler Vibrometry Data for the Nondestructive Evaluation of Frescoes, Journal of Sound and Vibration 304(3-5), 735-751, 2007.
  • Process Control System: Control of Temperature, Flow and Filling Level (May 2010). See URL. http://www.pacontrol.com/download/process-controlsystems. pdf.
  • Schlichting, H., Gersten, K., Boundary Layer Theory, (Eighth Revised and Enlarged Ed.), Springer, New York, U.S.A, 2003.
  • Sen, M., Bhaganagar, K. and Juttijudata, V., Application of Proper Orthogonal Decomposition (POD) to Investigate a Turbulent Boundary Layer in a Channel with Rough Walls, Journal of Turbulence 8(41), 2007.
  • Sirovich, L., Turbulence and the Dynamics of Coherent Structures, Part I: Coherent Structures, Quarterly Applied Mathematics 45(3), 561-571, 1987.
  • Smith, T. R., Moehlis, J. and Holmes, P., Low Dimensional Models for Turbulent Plane Couette Flow in a Minimal Flow Unit, Journal of Fluid Mechanics 538, 71-110, 2005.
  • Spalart, P. R., Allmaras, S. R., A One-Equation Turbulence Model for Aerodynamic Flows, 30th Aerospace Sciences Meeting and Exhibit, AIAA-92- 0439, January 6-9, Reno, 1992.
  • Tadmor, G., Bissex, D., Noack, B. R., Morzynsky, M., Colonius, T. and Taira, K. Temporal-Harmonic Specific POD Mode Extraction. 4th Flow Control Conference AIAA paper 2008-4190, Seattle, Washington, USA, 2008.
  • Unal, U. O. and Goren, O., Effects of Vortex Generators on the Flow Around a Circular Cylinder: Computational Investigation with Two-Equation Turbulence Models, Engineering Applications of Computational Fluid Mechanics 5(1), 99-116, 2011.
  • Wissink, J. G. and Rodi, W., Numerical Study of the Near Wake of a Circular Cylinder. International Journal of Heat and Fluid Flow 29, 1060-1070, 2008.
  • Zhdanov, V. L., Isaev, S. A, Niemann, H. J., Control of the Near Wake of a Circular Cylinder in Blowing Out of Low-Head Jets, Journal of Engineering Physics and Thermophysics 74(5), 1100-1103, 2001.
APA APACOGLU B, PAKSOY A, ARADAG S (2012). Effects of air blowing on turbulent flow over a circular cylinder. , 107 - 119.
Chicago APACOGLU Buryan,PAKSOY Akin,ARADAG Selin Effects of air blowing on turbulent flow over a circular cylinder. (2012): 107 - 119.
MLA APACOGLU Buryan,PAKSOY Akin,ARADAG Selin Effects of air blowing on turbulent flow over a circular cylinder. , 2012, ss.107 - 119.
AMA APACOGLU B,PAKSOY A,ARADAG S Effects of air blowing on turbulent flow over a circular cylinder. . 2012; 107 - 119.
Vancouver APACOGLU B,PAKSOY A,ARADAG S Effects of air blowing on turbulent flow over a circular cylinder. . 2012; 107 - 119.
IEEE APACOGLU B,PAKSOY A,ARADAG S "Effects of air blowing on turbulent flow over a circular cylinder." , ss.107 - 119, 2012.
ISNAD APACOGLU, Buryan vd. "Effects of air blowing on turbulent flow over a circular cylinder". (2012), 107-119.
APA APACOGLU B, PAKSOY A, ARADAG S (2012). Effects of air blowing on turbulent flow over a circular cylinder. Isı Bilimi ve Tekniği Dergisi, 32(2), 107 - 119.
Chicago APACOGLU Buryan,PAKSOY Akin,ARADAG Selin Effects of air blowing on turbulent flow over a circular cylinder. Isı Bilimi ve Tekniği Dergisi 32, no.2 (2012): 107 - 119.
MLA APACOGLU Buryan,PAKSOY Akin,ARADAG Selin Effects of air blowing on turbulent flow over a circular cylinder. Isı Bilimi ve Tekniği Dergisi, vol.32, no.2, 2012, ss.107 - 119.
AMA APACOGLU B,PAKSOY A,ARADAG S Effects of air blowing on turbulent flow over a circular cylinder. Isı Bilimi ve Tekniği Dergisi. 2012; 32(2): 107 - 119.
Vancouver APACOGLU B,PAKSOY A,ARADAG S Effects of air blowing on turbulent flow over a circular cylinder. Isı Bilimi ve Tekniği Dergisi. 2012; 32(2): 107 - 119.
IEEE APACOGLU B,PAKSOY A,ARADAG S "Effects of air blowing on turbulent flow over a circular cylinder." Isı Bilimi ve Tekniği Dergisi, 32, ss.107 - 119, 2012.
ISNAD APACOGLU, Buryan vd. "Effects of air blowing on turbulent flow over a circular cylinder". Isı Bilimi ve Tekniği Dergisi 32/2 (2012), 107-119.