Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması

Yıl: 2012 Cilt: 26 Sayı: 1 Sayfa Aralığı: 49 - 61 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması

Öz:
İlk nem seviyesi yaş baza göre % 85.9 (±0.03) olan 100 (±0.03) g ağırlığındaki ve 4 (±0.1) mm kalınlığındaki enginar (Cynara cardunculus L. var. scolymus) dilimleri yaş baza gore nem seviyesi % 9.52 (±0.005) oluncaya dek 50, 75 ve $100^{0}C$ sıcaklıktaki ve 1 m s-1 hıza sahip hava akımıyla kurutulmuşlardır. Kurutma işlemleri $50^{0}C$de 300 dakika, $75^{0}C$de 210 dakika ve $100^{0}C$de ise 130 dakika sürmüştür. Bu çalışmada kurutma literatüründe daha önce çeşitli araştırmacılar tarafından tanımlanmış ve deneysel, yarı deneysel ve teorik olarak sınıflandırılmış 21 farklı ince tabaka kurutma modelinin yanı sıra Midilli ve ark. (2002) eşitliğinden türetilmiş olan ve Alibaş Yaklaşımı olarak adlandırılmış yeni bir kurutma yaklaşımı ile deneysel olarak elde edilen veriler modellenmiştir. Deneysel olarak elde edilen veriler ile tahmin verileri arasındaki ilişkileri gösteren tanımlama katsayısı ($R^{2}$), standart hata değeri (SH), ortalama karesel hata ($E_{RMS}$) ve ki kare ($X^{2}$) değerleri hesaplanmıştır. Tanımlama katsayısının ($R^{2}$) en büyük olduğu, standart hata (SH), ki kare ($X^{2}$) ve ortalama karesel hata ($E_{RMS}$) değerlerinin ise en küçük olduğu model en iyi model olarak seçilmiştir. Buna göre çalışmada kullanılan üç farklı sıcaklık seviyesinde de elde edilen deneysel verilere en yakın sonuçları veren model Alibaş Modeli olarak belirlenmiştir.
Anahtar Kelime:

Konular: Mühendislik, Makine

Development of the nem drying model of explanation of drying curves in hor-air drying of artichoke slices and comparison between the other drying models and the new model

Öz:
Artichoke (Cynara cardunculus L. var. scolymus) slices with 100 (±0.03) g weight and 85.9 % (±0.03) humidity on wet basis were dried in convective oven at 50, 75 and $100^{0}C$ temperatures, until the moisture content fell down to 9.52 % (±0.005) on wet basis. Drying processes were completed between 300 and 130 min depending on temperature levels.In this study, measured values were compared with predicted values obtained from twenty one thin layer drying theoretical, semi-empirical and empirical equations including a new thin layer drying equation and a new model is called Alibas (equation is derived from Midilli ve ark., 2002). In this study, coefficient of determination ($R^{2}$), standard error of estimated (SEE), root mean square error ($E_{RMS}$) and chi-square ($X^{2}$) was calculated. For applied temperature levels; model whose ($R^{2}$) are highest and standard error of estimated (SEE), root mean square error ($E_{RMS}$) and chi-square ($X^{2}$) are lowest was chosen to be the best model. According to this, the best model for the all temperature levels was found to be Alibas Model
Anahtar Kelime:

Konular: Mühendislik, Makine
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aghlasho, M., Kianmehr, M.H., Khani, S. and M., Ghasemi, 2009. Mathematical Modeling of Carrot Thin-layer Drying Using New Model. Int. Agrophysic., 23;313-317.
  • Akpinar E., Bicer, Y. and A., Midilli, 2003. Modelling and Experimental Study on Drying of Apple Slices in A Convective Cyclone Dryer. Journal of Food Process Engineering, 26;515-543.
  • Alibas, I., 2006. Characteristics of Chard Leaves during Microwave, Convective, and Combined Microwave-Convective Drying. Drying Technology, 24(1);1425-1435.
  • Babalis, S.J., Papanicolaou, E., Kyriakis, N. And V.G., Belessiotis, 2006. Evaluation of Thin-Layer Drying Models for Describing Drying Kinetics of Figs (Ficus carica). Journal of Food Engineering, 75;205-214.
  • Cao, W., Nishiyama, Y. and S., Koide, 2003. Thin-Layer Drying of Maitake Mushroom Analysed with A Simplified Model. Biosystems Engineering, 85;331-337.
  • Chandra, P.K. and R.P., Singh, 1995. Applied Numerical Methods for Food and Agricultural Engineers. pp. 163-167. CRC Press. Boca Raton, FL.
  • Cihan, A., Kahveci, K. and O., Hacıhafızoğlu, 2007. Modelling of Intermittent Drying of Thin Layer Rough Rice. Journal of Food Engineering, 79;293-298.
  • Demir, V., Gunhan, T., Yagcioglu, A.K. and A., Degirmencioglu, 2004. Mathematical Modelling and the Determination of Some Quality Parameters of Air-Dried Bay Leaves. Biosystems Engineering, 88;325-335.
  • Demir, V., Gunhan, T. and A.K., Yagcioglu, 2007. Mathematical Modelling of Convection Drying of Green Table Olives. Biosystems Engineering, 98(1);47-53.
  • Diamante, L.M. and P.A., Munro, 1991. Mathematical Modeling of Hot Air Drying of Sweet Potato Slices. International Journal of Food Science and Technology, 26;99.
  • Diamante, L.M. and P.A., Munro, 1993. Mathematical Modeling of the Thin Layer Solar Drying of Sweet Potato Slices. Solar Energy, 51;271-276.
  • Doymaz, I., 2004a. Convective Air Drying Characteristics of Thin Layer Carrots. Journal of Food Engineering, 61;359-364.
  • Doymaz, I., 2004b. Drying Characteristics and Kinetics of Okra. Journal of Food Engineering, 69;275-279.
  • Doymaz, I. and M., Pala, 2002. Hot-Air Drying Characteristics of Red Pepper. Journal of Food Engineering, 55;331-335.
  • Doymaz, İ., Tugrul, N. and M., Pala, 2006. Drying Characteristics of Dill and Parsley Leaves. Journal of Food Engineering, 77;559-565.
  • Englisch, W., Beckers, C., Unkauf, M., Ruepp, M. and V., Zinserling, 2005. Efficacy of Artichoke Dry Extract in Patients with Hyperlipoproteinemia, 50(3);260-265.
  • Ertekin, C. and O., Yaldiz, 2004. Drying of Eggplant and Selection of a Suitable Thin Layer Drying Model. Journal of Food Engineering, 63;349-359.
  • Goyalde, N.A., Melo, E. deC., Goneli, R.P.A.L.D. and F.L., Araújo, 2009. Mathematical Modeling of The Drying Kinetics of Sugar Cane Slices. Revista Brasileira de Produtos Agroindustriais, Campina Grande, 11(2);117-121.
  • Gunhan, T., Demir, V., Hancioglu, E. and A., Hepbasli, 2005. Mathematical Modeling of Drying of Bay Leaves. Energy Conversion and Management, 46; 1667-1679.
  • Gupta, P., Ahmed, J., Shivhare, U.S. and G.S.V., Raghavan, 2002. Drying Characteristics of Red Chilli. Drying Technology, 20;1975-1987.
  • Henderson, S.M., 1974. Progress in Developing the Thin Layer Drying Equation. Transection of ASAC, 17;1167-1172.
  • Henderson, S.M. and S., Pabis, 1961. Grain Drying Theory. II. Temperature Effects on Drying Coefficients. Journal of Agricultural Engineering Research, 6;169-174.
  • Işık, E., ve İ., Alibaş, 2000. Tarımsal Ürünlerin Kurutulmasında Kullanılan Yöntemler ve Kurutma Sistemleri, Uludağ Üniversitesi Ziraat Fakültesi Yardımcı Ders Notu No:3, s.17, Bursa, Türkiye.
  • Jena, S. and H., Das, 2007. Modelling for Vacuum Drying Characteristics of Coconut Presscake. Journal of Food Engineering, 79;92-99.
  • Karaaslan, S.N. and İ.K., Tunçer, 2008. Development of a Drying Model for Combined Microwave-Fan Assisted Convection Drying of Spinach. Biosystems Engineering, 100;44-52.
  • Karathanos, V.T., 1999. Determination of Water Content of Dried Fruits by Drying Kinetics. Journal of Food Engineering, 39;337-344.
  • Kassem, A.S., 1998. Comparative Studies on Thin Layer Drying Models for Wheat. 13 th International Congress on Agricultural Engineering, vol. 6, Morocco. 2-6 February.
  • Lewis, W.K., 1921. The Rate of Drying of Solid Materials. Industrial Engineering Chemistry, 13;427-432.
  • Midilli, A. and H., Kucuk, 2003. Mathematical Modeling of Thin Layer Drying of Pistachio by using Solar Energy. Energy Conversion and Management, 44(7);1111-1122.
  • Midilli, A., Kucuk, H. and Z., Yapar, 2002. A New Model for Single Layer Drying. Drying Technology, 20(7);1503-1513.
  • Overhults, D.D., White G.M., Hamilton M.E. and I.J., Ross, 1973. Drying Soybeans with Heated Air. Transactions of the ASEA, 16;195-200.
  • Özdemir, M. and Y.O., Devres, 1999. The Thin Layer Drying Characteristics of Hazelnuts during Roasting. Journal of Food Engineering, 42; 225-233.
  • Page, G., 1949. Factors Influencing the Maximum Rates of Air-Drying Shelled Corn in Thin Layer. M.S. Thesis. Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
  • Rottenberg, A., and D., Zohary, 1996. The Wild Ancestry of The Cultivated Artichoke. Genet. Res. Crop Evol., 43;53-58.
  • Saeed, I.E., Sopian, K. and Z.Z., Abidin, 2008. Drying Characteristics of Roselle (1): Mathematical Modeling and Drying Experiments. Agricultural Engineering International: The CIGR Ejournal. Manuscript FP 08 015.
  • Seiiedlou, S., Ghasemzadeh, H.R., Hamdami, N., Talati, F. and M., Moghaddam, 2010. Convective Drying of Apple: Mathematical Modeling and Determination of some Quality Parameters. International Journal of Agriculture & Biology, 12(2);171-178.
  • Sharaf-Eldeen, Y.I., Blaisdell, J.L. and M.Y., Hamdy, 1980. A Model for Ear Corn Drying. Transections of the ASAE, 23;1261-1271.
  • Shiby, V.K. and H.N., Mishra, 2007. Thin Layer Modelling of Recirculatory Convective Air Drying of Curd (Indian Yoghurt). Trans IChemE, Part C, Food and Bioproducts Processing, 85(3);193-201.
  • Taheri-Garavand, A., Rafiee, S. and A., Keyhani, 2010. Mathematical Modeling of Thin Layer Drying Kinetics of Tomato Influence of Air Dryer Conditions. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 2(2);147-160.
  • Thomson, T.L., Peart P.M. and G.H., Foster, 1968. Mathematical Simulation of Corn Drying: A New Model. Transaction of the ASAE, 11;582-586.
  • Toğrul, H., 2006. Suitable drying model for infrared drying of carrot. Journal of Food Engineering, 77(3);610-619.
  • Verma, L.R., Bucklin, R.A., Endan, J.B. and F.T., Wratten, 1985. Effects of Drying Air Parameters on Rice Drying Models. Transactions of the ASEA, 28;296-301.
  • Wang, C.Y. and R.P., Singh, 1978. A Single Layer Drying Equation for Rough Rice. ASAE Paper No. 78-3001, ASAE, St. Joseph, MI.
  • Yagcioglu, A., Degirmencioglu, A. and F., Cagatay, 1999. Drying Characteristic of Laurel Leaves under Different Conditions of Conditions. In: Bascetincelik A., editor. Proceeding of the 7 th International Congress of Agricultural Mechanization and Energy, p.565-569. Cukurova University, Adana, Turkey. 26-27 May.
APA Alibas I (2012). Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. , 49 - 61.
Chicago Alibas Ilknur Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. (2012): 49 - 61.
MLA Alibas Ilknur Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. , 2012, ss.49 - 61.
AMA Alibas I Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. . 2012; 49 - 61.
Vancouver Alibas I Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. . 2012; 49 - 61.
IEEE Alibas I "Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması." , ss.49 - 61, 2012.
ISNAD Alibas, Ilknur. "Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması". (2012), 49-61.
APA Alibas I (2012). Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26(1), 49 - 61.
Chicago Alibas Ilknur Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 26, no.1 (2012): 49 - 61.
MLA Alibas Ilknur Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, vol.26, no.1, 2012, ss.49 - 61.
AMA Alibas I Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi. 2012; 26(1): 49 - 61.
Vancouver Alibas I Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi. 2012; 26(1): 49 - 61.
IEEE Alibas I "Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması." Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26, ss.49 - 61, 2012.
ISNAD Alibas, Ilknur. "Sıcak havayla kurutulan enginar (Cynara Cardunculus L. Var. Scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması". Uludağ Üniversitesi Ziraat Fakültesi Dergisi 26/1 (2012), 49-61.