Yıl: 2013 Cilt: 22 Sayı: 4 Sayfa Aralığı: 563 - 573 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey

Öz:
The basal part of the Hüdai Formation (Early Cambrian) in the Aydıncık (Mersin) area comprises red sandstone beds at different stratigraphic levels, showing ripple cross-lamination. These beds were deposited in the middle to lower part of an intertidal flat environment. Bedding-parallel reddening and its cyclic character suggest syn-sedimentary or early diagenetic red colouration in a marine environment. Both X-ray diffraction and petrographic analyses indicate that the red sandstones are composed of predominantly K-feldspar and quartz grains and an illite matrix. These are dominantly arkosic wacke. A small amount of hematite (<5 wt.%) is present in all the samples, which gives a red colour to the whole rock. Scanning electron microscopy images show that hematite pigment appears as spherical and rod-shaped particles in sizes of 1 &#956;m or less disseminated on the grains and in the matrix. Considering their size and morphology, the hematite particles can be interpreted as fossil bacteria, indicating a bacterially induced precipitation, probably from seawater. A 2-step biomineralisation process could explain iron oxidation during early diagenesis in an intertidal environment: (a) trapping of iron ($Fe^{2+}$) on the bacterial cell wall with oxidation by bacterial activity; (b) inorganic precipitation followed early-stage bacterial nucleation sites resulting in crystal growth. The Fe2+ for reddening is provided by an intrastratal alteration of the iron-bearing minerals.
Anahtar Kelime:

Konular: Jeoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Al-Rawi Y (1983). Origin of red color in the Gercus Formation (Eocene), northeastern Iraq. Sediment Geol 35: 177–192. Atlas RM (1995). Microorganisms in Our World. St. Louis, Missouri, USA: Mosby.
  • Benzerara K, Miot J, Morin G, Kapler A, Obst M (2008). Biomineralization by iron-oxidizing bacteria. In: Dalzell M, editor. Canadian Light Source Activity Report 2008. Saskatoon: Canadian Light Source, Inc., pp. 86–87.
  • Boggs S Jr (1987). Principles of Sedimentology and Stratigraphy. New York: Macmillan.
  • Boulvain F, De Ridder C, Mamet B, Preat A, Gillan D (2001). Iron microbial communities in Belgian Frasnian carbonate mounds. Facies 44: 47–60.
  • Casanova J, Bodenan F, Negrel P, Azaroual M (1999). Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the Cezallier hydrothermal springs (Masif Central, France). Sediment Geol 126: 125–145.
  • Crichton RR (1991). Inorganic Biochemistry of Iron Metabolism. Chichester, UK: Ellis Horwood.
  • Churchman GJ (2000). The alteration and formation of soil minerals by weathering. In: Sumner ME, editor. Handbook of Soil Science. Boca Raton, Florida, USA: CRC Press, pp. F3–F76.
  • Dean WT, Özgül N (1994). Cambrian rocks and faunas, Hüdai area, Taurus Mountains, southwestern Turkey. Bull Inst Roy Sci Nat Belg 64: 5–20.
  • Della Porta G, Mamet B, Preat A (2003). Microbial mediation in the formation of red limestones, Upper Carboniferous, Cantabrian Mountains, Spain. In: Wong TE, editor. Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy, Utrecht, the Netherlands, pp. 243–250.
  • Dickinson WR, Suczek CA (1979). Plate tectonic and sandstone composition. AAPG Bulletin 63: 2164–2182.
  • Ehrenreich A, Widdel F (1994). Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60: 4517–4526.
  • Ehrlich HL (1996). Geomicrobiology. New York: Marcel Dekker.
  • Ehrlich HL (1998). Geomicrobiology: its significance for geology. Earth Sci Rev 45: 454–460.
  • Einsele G (1992). Sedimentary Basins – Evolution, Facies, and Sediment Budget. Berlin: Springer.
  • Eren M, Kadir S (1999). Colour origin of upper cretaceous pelagic red sediments within the eastern Pontides, northeast Turkey. Int J Earth Sci 88: 593–595.
  • Eren M, Kaplan MY, Kadir S (2007). Petrography, geochemistry and origin of Lower Liassic dolomites in the Aydıncık area, Mersin, southern Turkey. Turkish J Earth Sci 16: 339–362.
  • Eren M, Öner F (2000). Sedimentary characteristics of the Hüdai Formation (Early Cambrian) within the Aydıncık (İçel), S Turkey. Ann Soc Geol Pol 70: 251–259.
  • Eren M, Taslı K, Tol N (2002). Sedimentology of Liassic carbonates (Pirencik Tepe measured section) in the Aydıncık (İçel) area, southern Turkey. J Asian Earth Sci 20: 791–801.
  • Folk RL (1976). Reddening of desert sandstone: Simpson Desert, N.T., Australia. J Sediment Petrol 46: 604–615.
  • Fortin D, Langley S (2005). Formation and occurrence of biogenic iron-rich minerals. Earth Sci Rev 72: 1–19.
  • Franke W, Paul J (1980). Pelagic redbeds in the Devonian of Germany – deposition and diagenesis. Sediment Geol 25: 231–256.
  • Fredrickson JK, Zachara JM (2008). Electron transfer at the microbemineral interface: a grand challenge in biogeochemistry. Geobiology 6: 245–253.
  • Friedman GM, Sanders JE, Kopaska-Merkel DC (1992). Principles of Sedimentary Deposits: Stratigraphy and Sedimentology. New York: Macmillan.
  • Ghiorse WC (1984). Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38: 515–550.
  • Göncüoğlu MC (1995). Distribution of Lower Paleozoic rocks in the Alpine Terranes of Turkey: Paleogeographic constraints. In: Göncüoğlu MC, Derman AS, editors. Early Paleozoic Evolution in NW Gondwana. TAPG Special Publication 3, pp. 13–23.
  • Göncüoğlu MC, Kozlu H (2000). Early Paleozoic evolution of the NW Gondwanaland: data from Southern Turkey and surrounding regions. Gondwana Res 3: 315–324.
  • Jimenez-Espinosa R, Jimenez-Millan J (2003). Calcrete development in Mediterranean colluvial carbonate systems from SE Spain. J Arid Environ 53: 479–489.
  • Jørgensen BB (1982). Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296: 643–645.
  • Kampf N, Scheinost AC, Schulze DG (2000). Oxide minerals. In: Sumner ME, editor. Handbook of Soil Science. Boca Raton, Florida, USA: CRC Press, pp. 125–168.
  • Kappler A, Schink B, Newman DK (2005). Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1. Geobiology 3: 235–245.
  • Klein GD (1970). Tidal origin of a Precambrian Quartzite; the lower fine-grained quartzite (Middle Dalradian) of Islay, Scotland. J Sediment Petrol 40: 973–985.
  • Koç H (1996). Stratigraphy and Geotectonic Interpretation of Aydıncık (İçel) Area. MS thesis, Mersin University, Mersin, Turkey [unpublished, in Turkish].
  • Koç H, Özer E, Özsayar T (1997). Geology of Aydıncık (İçel) area. Geosound Earth Sci 30: 417–427.
  • Konhauser KO (1998). Diversity of bacterial iron mineralization. Earth Sci Rev 43: 91–121.
  • Kozlu H, Göncüoğlu MC (1995). Stratigraphy of the Infra-Cambrian rock-units in eastern Taurides and their correlation with similar units in southern Turkey. In: Göncüoğlu MC, Derman AS, editors. Early Paleozoic Evolution in NW Gondwana. TAPG Special Publication 3, pp. 50–60 (in Turkish).
  • Krynine PD (1949). The origin of red beds. Trans NY Acad Sci 11: 60–68.
  • Larsonneur C (1975). Tidal deposits, Mont Saint-Michel Bay, France. In: Ginsburg RN, editor. Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. New York: Springer, pp. 21–30.
  • Mamet B, Preat A (2006). Iron-bacterial mediation in Phanerozoic red limestones: state of the art. Sediment Geol 185: 147–157.
  • Mamet B, Preat A, De Ridder C (1997). Bacterial origin of the red pigmentation in the Devonian Slivenec Limestone, Czech Republic. Facies 36: 173–188.
  • McBride EF (1974). Significance of color in red, green, purple, olive, brown, and gray beds of Difunta Group, northeastern Mexico. J Sediment Petrol 44: 760–773.
  • Miot J, Benzerara K, Morin G, Kappler A, Bernard S, Obst M, Ferard C, Skouri-Panet F, Guigner JM, Posth N, Galvez M, Brown
  • GE Jr, Guyot F (2009). Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim Cosmochim Acta 73: 696–711.
  • Myrow PM (1990). A new graph for understanding colors of mudstones and shales. J Geol Educ 38: 16–20.
  • Özgül N (1983). Stratigraphy and tectonic evolution of the Central Taurides. In: Tekeli O, Göncüoğlu MC, editors. Proceedings of the International Symposium on the Geology of the Taurus Belt, Ankara, pp. 77–90.
  • Pettijohn FJ, Potter PE, Siever R (1987). Sand and Sandstone. New York: Springer.
  • Preat A, Mamet B, Bernard A, Gillan D (1999). Bacterial mediation red matrices diagenesis, Devonian, Montagne Noire (southern France). Sediment Geol 126: 223–242.
  • Preat A, Mamet B, De Ridder C, Boulvain F, Gillan D (2000). Iron bacterial and fungal mats, Bajocian stratotype (Mid-Jurassic, northern Normandy, France). Sediment Geol 137: 107–126.
  • Pye K (1983). Red beds. In: Goudie AS, Pye K, editors. Chemical Sediments and Geomorphology. London: Academic Press, pp. 227–263.
  • Robb GL (1949). Red bed coloration. J Sediment Petrol 19: 99–103.
  • Rogers JR, Bennett PC (2004). Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol 203: 91–108.
  • Santelli CM, Welch SA, Westrich HR, Banfield JF (2001). The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution. Chem Geol 180: 99–115.
  • Schwertmann U (1993). Relation between iron oxides, soil color, and soil formation. In: Bigham JM, Ciolkosz EJ, editors. Soil Color. Madison, Wisconsin, USA: Soil Science Society of America, pp. 51–69.
  • Schwertmann U, Taylor RM (1989). Iron oxides. In: Dixon JB, Weed SB, editors. Minerals in Soil Environments. Madison, Wisconsin, USA: Soil Science Society of America, pp. 379–438.
  • Stumm W, Morgan JJ (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York: John Wiley & Sons.
  • Tucker ME (1991). Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Oxford: Blackwell.
  • Turner P (1979). Diagenetic origin of Cambrian marine red beds: Caerfai Bay shales, Dyfed Wales. Sediment Geol 24: 269–281.
  • Turner P (1980). Continental Red Beds. Amsterdam: Elsevier.
  • Van Houten FB (1968). Origin of red beds. Geol Soc Am Bull 79: 399–416.
  • Van Houten FB (1973). Origin of red beds: a review 1961–1972. Annu Rev Earth Planet Sci 1: 39–61.
  • Walker TR (1967). Formation of red beds in modern and ancient deserts. Geol Soc Am Bull 78: 353–368.
  • Walker TR, Larson EE, Hoblitt RP (1981). Nature and origin of hematite in the Moenkopi Formation (Triassic), Colorado plateau: a contribution to the origin of magnetism in red beds. J Geophys Res 86: 317–333.
  • Wehrmann A, Yılmaz I, Yalçın MN, Wilde V, Schindler E, Weddige K, Demirtaş GS, Özkan R, Nazik A, Nalcıoğlu G, Kozlu H, Karslıoğlu Ö, Jansen U, Ertuğ K (2010). Devonian shallowwater sequences from the North Gondwana coastal margin (Central and Eastern Taurides, Turkey): Sedimentology, facies and global events. Gondwana Res 17: 546–560.
APA Eren M, KADİR S (2013). Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. , 563 - 573.
Chicago Eren Muhsin,KADİR Selahattin Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. (2013): 563 - 573.
MLA Eren Muhsin,KADİR Selahattin Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. , 2013, ss.563 - 573.
AMA Eren M,KADİR S Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. . 2013; 563 - 573.
Vancouver Eren M,KADİR S Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. . 2013; 563 - 573.
IEEE Eren M,KADİR S "Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey." , ss.563 - 573, 2013.
ISNAD Eren, Muhsin - KADİR, Selahattin. "Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey". (2013), 563-573.
APA Eren M, KADİR S (2013). Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. Turkish Journal of Earth Sciences, 22(4), 563 - 573.
Chicago Eren Muhsin,KADİR Selahattin Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. Turkish Journal of Earth Sciences 22, no.4 (2013): 563 - 573.
MLA Eren Muhsin,KADİR Selahattin Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. Turkish Journal of Earth Sciences, vol.22, no.4, 2013, ss.563 - 573.
AMA Eren M,KADİR S Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. Turkish Journal of Earth Sciences. 2013; 22(4): 563 - 573.
Vancouver Eren M,KADİR S Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. Turkish Journal of Earth Sciences. 2013; 22(4): 563 - 573.
IEEE Eren M,KADİR S "Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey." Turkish Journal of Earth Sciences, 22, ss.563 - 573, 2013.
ISNAD Eren, Muhsin - KADİR, Selahattin. "Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey". Turkish Journal of Earth Sciences 22/4 (2013), 563-573.