Yıl: 2013 Cilt: 42 Sayı: 1 Sayfa Aralığı: 67 - 79 Metin Dili: İngilizce

Absolute co-supplement and absolute co-coclosed modules

Öz:
A module M is called an absolute co-coclosed (absolute co-supplement) module if whenever M =$cong$ the submodule X of T is a coclosed (supplement) submodule of T. Rings for which all modules are absolute co-coclosed (absolute co-supplement) are precisely determined. We also investigate the rings whose ( nitely generated) absolute co-supplement modules are projective. We show that a commutative domain R is a Dedekind domain if and only if every submodule of an absolute co-supplement R-module is absolute co-supplement. We also prove that the class Coclosed of all short exact sequences 0 A /B /C /0 such that A is a coclosed submodule of B is a proper class and every extension of an absolute co-coclosed module by an absolute co-coclosed module is absolute co-coclosed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules (New York: Springer, 1974.)
  • [2] Clark, J., Keskin Tutuncu D. and Tribak, R. Supplement submodules of injective modules, Comm: Algebra: 39, 4390-4402, 2011.
  • [3] Clark, J., Lomp, C., Vanaja N. and Wisbauer, R. Lifting Modules; Supplements and Projectivity in Module Theory (Frontiers in Math. Boston: Birkhauser, 2006.)
  • [4] Dung, N. V., Hyunh, D. V., Smith P. F. and Wisbauer, R. Extending Modules; Pitman Research Notes in Mathematics Series (UK: Longman Scienti c and Technical, 1994.)
  • [5] Erdogan, S. E. Absolutely Supplement and Absolutely Complement Modules (M. Sc. dissertation, _Izmir Institute of Technology, 2004) Electronic copy: http://library.iyte.edu.tr/tezler/master/matematik/T000339.pdf.
  • [6] Ganesan, L. and Vanaja, N. Modules for which every submodule has a unique coclosure, Comm: Algebra: 30 (5), 2355-2377, 2002.
  • [7] Generalov, A. I. The !-cohigh purity in a categories of modules, Math: Notes 33 (5-6) 402{408. Translated from Russian from Mat: Zametki 33 (5), 758-796, 1983.
  • [8] Gerasimov, V. N. and Sakhaev, I. I. A counter example to two hypotheses on projective and at modules, Sib: Mat: Zh: 25 (6), 31{35, 1984. English translation: Sib: Math: J: 24, 855-859, 1984.
  • [9] Goodearl, K. R. Ring Theory: Nonsingular Rings and Modules (New York and Basel: Marcel Dekker Inc:, 1976.)
  • [10] Lam, T. Y. Lectures on Modules and Rings (New York, Berlin, Heidelberg: Springer, 1999.)
  • [11] Mermut, E. Homological Approach to Complements and Supplements (Ph.D. dissertation, Dokuz Eylül University, 2004.)
  • [12] Mishina A. P. and Skornyakov, L. A. Abelian groups and modules, American Mathematical Society Translations Series 2, 107, 1976. Translated from Russian from Abelevy gruppy i moduli, Izdat. Nauka, 1969.
  • [13] Mohammed, A. and Sandomierski, F. L. Complements in projective modules, J: Algebra 127, 206-217, 1989.
  • [14] Mohamed, S. H. and Muller, B. J. Continuous and Discrete Modules (London Math. Soc. Lecture Notes Series 147, Cambridge, 1990.)
  • [15] Sklyarenko, E. G. Relative homological algebra in categories of modules, Russian Math: Surveys 33 (3), 97{137, 1978. Traslated from Russian from Uspehi Mat: Nauk 33 3(201), 85-120, 1978.
  • [16] Talebi, Y. and Vanaja, N. The torsion theory cogenerated by M-small modules, Comm: Algebra 30 (3), 1449{1460, 2002.
  • [17] War eld, R. B. Jr. Serial rings and nitely presented modules, J: Algebra 37, 187-222, 1975.
  • [18] Zoschinger, H. Projektive Moduln mit endlich erzeugtem Radikalfaktormodul, Math: Ann: 255 199-206, 1981.
  • [19] Zoschinger, H. Schwach-injective moduln, Periodica Mathematica Hungarica 52 (2), 105-128, 2006.
APA KESKİN TÜTÜNCÜ D, TOKSOY S (2013). Absolute co-supplement and absolute co-coclosed modules. Hacettepe Journal of Mathematics and Statistics, 42(1), 67 - 79.
Chicago KESKİN TÜTÜNCÜ DERYA,TOKSOY Sultan Eylem Absolute co-supplement and absolute co-coclosed modules. Hacettepe Journal of Mathematics and Statistics 42, no.1 (2013): 67 - 79.
MLA KESKİN TÜTÜNCÜ DERYA,TOKSOY Sultan Eylem Absolute co-supplement and absolute co-coclosed modules. Hacettepe Journal of Mathematics and Statistics, vol.42, no.1, 2013, ss.67 - 79.
AMA KESKİN TÜTÜNCÜ D,TOKSOY S Absolute co-supplement and absolute co-coclosed modules. Hacettepe Journal of Mathematics and Statistics. 2013; 42(1): 67 - 79.
Vancouver KESKİN TÜTÜNCÜ D,TOKSOY S Absolute co-supplement and absolute co-coclosed modules. Hacettepe Journal of Mathematics and Statistics. 2013; 42(1): 67 - 79.
IEEE KESKİN TÜTÜNCÜ D,TOKSOY S "Absolute co-supplement and absolute co-coclosed modules." Hacettepe Journal of Mathematics and Statistics, 42, ss.67 - 79, 2013.
ISNAD KESKİN TÜTÜNCÜ, DERYA - TOKSOY, Sultan Eylem. "Absolute co-supplement and absolute co-coclosed modules". Hacettepe Journal of Mathematics and Statistics 42/1 (2013), 67-79.