Yıl: 2011 Cilt: 28 Sayı: 1 Sayfa Aralığı: 1 - 14 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

The importance of protein profiling in the diagnosis and treatment of hematologic malignancies

Öz:
Malignitelerde proteinlerin hücresel mekanizmalarında meydana gelen bozukluklardan dolayı, proteinler kanser araştırmaları için önemli hedeflerdir. Proteomiksin alt uzmanlık dalı olarak ortaya çıkan ve bağımsız bir alan olan protein profilleme biyolojik olaylara farklı bir bakış açısı sağlamak amacıyla hızla gelişmektedir. Hematolojik malignitelerdeki protein düzeylerinin kantitatif olarak değerlendirilmesi, teşhise yardımcı olması, tedavinin izlenmesi ve klinik sonuçların tahmininde mükemmel bir yaklaşım olması nedeni ile lösemi ile ilgili protein modellerinin kapsamlı bir şekilde incelenmesini amaçlamaktadır. Son dönemlerde geliştirilen yüksek verimli yöntemler protein profillemede kullanılabilir. Bu makalede, protein profillemenin önemi, lösemi araştırmalarındaki rolü, çeşitli kanser tiplerinin tanısı ve tedavisi için klinik kullanımları ve protein profilindeki değişikliklerin belirlenmesinde kullanılan teknikler değerlendirilmiştir.
Anahtar Kelime:

Konular: Hematoloji

Hematolojik malignitelerin tanı ve tedavisinde protein profillemenin önemi

Öz:
Proteins are important targets in cancer research because malignancy is associated with defects in cell protein machinery. Protein profiling is an emerging independent subspecialty of proteomics that is rapidly expanding and providing unprecedented insight into biological events. Quantitative assess- ment of protein levels in hematologic malignancies seeks a comprehensive understanding of leukemia- associated protein patterns for use in aiding diagnosis, follow-up treatment, and the prediction of clinical outcomes. Many recently developed high-throughput proteomic methods can be applied to protein profiling. Herein the importance of protein profiling, its exploitation in leukemia research, and its clinical usefulness in the treatment and diagnosis of various cancer types, and techniques for deter- mining changes in protein profiling are reviewed.
Anahtar Kelime:

Konular: Hematoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Twyman RM. Principles of Proteomics. New York: Academic Press, 2004.
  • Graves PR, Haystead TAJ. Molecular Biologist’s Guide to Proteomics. Microbiology and Molecular Biology Reviews 2002;66:39-63. [CrossRef]
  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 1996;13:19-50.
  • Pandey A, Mann M. Proteomics to study genes and genomes. Nature 2000;405:837-46. [CrossRef]
  • James P Protein identification in the post-genome era: the rapid rise of proteomics. Quarterly Reviews of Biophysics 1997;30:279-331. [CrossRef]
  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Smith IH, Williams KL, Hochstrasser DF. From Proteins to Proteomes: Large Scale Protein Identification by Two-
  • Dimensional Electrophoresis and Amino Acid Analysis. Nature Biotechnology 1996;14:61-5. [CrossRef]
  • Lane CS. Mass spectrometry-based proteomics in the life sciences. Cellular and Molecular Life Sciences. 2005;62:848-69. [CrossRef]
  • Eisenberg D, Marcotte EM, Xenarios I, Yeates TO. Protein function in the post-genomic era. Nature 2000;405:823-6. [CrossRef]
  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complemen- tary DNA microarray. Science 1995;270:467-70. [CrossRef]
  • Shalon D, Smith SJ, Brown PO. A DNA microarray sys- tem for analyzing complex DNA samples using two- color fluorescent probe hybridization. Genome Research. 1996;6:639-45. [CrossRef]
  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995;270:484-7. [CrossRef]
  • Abbott A. A post-genomic challenge: learning to read patterns of protein synthesis. Nature 1999;402:715-20.
  • Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997;18:533-7. [CrossRef]
  • Gygi SP Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology 1999;19:1720-30.
  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001;292:929-34. [CrossRef]
  • Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS. Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 2008;24:2894-900. [CrossRef]
  • Dhingraa V, Gupta M, Andacht T, Fu ZF. New frontiers in proteomics research: A perspective. International Journal of Pharmaceutics 2005;299:1-18. [CrossRef]
  • Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 1995;80:225-36.
  • Glickman MH, Ciechanovr A. The ubiquitin-protea- some proteolytic pathway; destruction for the sake of construction. Physiological Reviews 2002;82:373-428.
  • Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxy- genase 2 gene expression in human colorectal adeno- mas and adenocarcinomas. Gastroenterology 1994;107:1183-8.
  • Bártek J, Bártková J, Vojtĕsek B, Stasková Z, Lukás J, Rejthar A, Kovarík J, Midgley CA, Gannon JV, Lane DP Aberrant expression of the p53 oncoprotein is a com- mon feature of a wide spectrum of human malignan- cies. Oncogene 1991;6:1699-703.
  • Lin KY, Lu D, Hung CF, Peng S, Huang L, Jie C, Murillo F, Rowley J, Tsai YC, He L, Kim DJ, Jaffee E, Pardoll D,
  • Wu TC. Ectopic expression of vascular cell adhesion molecule-1 as a new mechanism for tumor immune evasion. Cancer Research 2007;67:1832-41. [CrossRef]
  • Ye P Mariniello B, Mantero F, Shibata H, Rainey WE. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism. Journal of Endocrinology 2007;195:39-48. [CrossRef]
  • Gashaw I, Grümmer R, Klein-Hitpass L, Dushaj O, Bergmann M, Brehm R, Grobholz R, Kliesch S, Neuvians TP Schmid KW, von Ostau C, Winterhager E. Gene signatures of testicular seminoma with emphasis on expression of ets variant gene 4. Cellular and Molecular Life Sciences 2005;62:2359-68. [CrossRef]
  • Spira A, Beane JE, Shah V, Steiling K, Liu G, Schembri F, Gilman S, Dumas YM, Calner P Sebastiani P Sridhar S, Beamis J, Lamb C, Anderson T, Gerry N, Keane J, Lenburg ME, Brody JS. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung can- cer. Nature Medicine 2007;13:361-6. [CrossRef]
  • Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 2002;1:289-98. [CrossRef]
  • Sørensen BS, Gebhardt MC, Kloen P McIntyre J, Aguilar F, Cerutti P Børresen AL. Screening for TP53 mutations in osteosarcomas using constant denaturant gel electropho- resis (CDGE). Human Mutation 1993;2:274-85. [CrossRef]
  • Mathupala SP Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor sup- pressor p53. The Journal of biological chemistry 1997;272:22776-80. [CrossRef]
  • Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hotspot in the p53 gene in human hepatocel- lular carcinomas. Nature 1991;350:427-8. [CrossRef]
  • Kawamura M, Kikuchi A, Kobayashi S, Hanada R, Yamamoto K, Horibe K, Shikano T, Ueda K, Hayashi K, Sekiya T, et al. Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia. Blood 1995;85:2546-52.
  • Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN, Ronai Z. JNK targets p53 ubiquitination and degrada- tion in nonstressed cells. Genes & development 1998;12:2658-63. [CrossRef]
  • Foo RS, Nam YJ, Ostreicher MJ, Metzl MD, Whelan RS, Peng CF, Ashton AW, Fu W, Mani K, Chin SF, Provenzano E, Ellis I, Figg N, Pinder S, Bennett MR, Caldas C, Kitsis RN. Regulation of p53 tetramerization and nuclear export by ARC. Proceedings of the National Academy of Sciences of the United States of America 2007;104:20826-31. [CrossRef]
  • Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage- induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997;91:325-34.
  • Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000;408:377-81. [CrossRef]
  • Skorski T, Nieborowska-Skorska M, Nicolaides NC, Szczylik C, Iversen P Iozzo RV, Zon G, Calabretta B. Suppression of Philadelphia1 leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proceedings of the National Academy of Sciences of the United States of America 1994;91:4504-8. [CrossRef]
  • Baran Y, Ural AU, Gunduz U. Mechanisms of cellular resistance to imatinib in human chronic myeloid leu- kemia cells. Hematology 2007;12:497-503. [CrossRef]
  • Saglio G, Kim DW, Issaragrisil S, le Coutre P Etienne G, Lobo C, Pasquini R, Clark RE, Hochhaus A, Hughes TP Gallagher N, Hoenekopp A, Dong M, Haque A, Larson RA, Kantarjian HM; ENESTnd Investigators. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. The New England Journal of Medicine 2010;362:2251-9.
  • Kantarjian H, Shah NP Hochhaus A, Cortes J, Shah S, Ayala M, Moiraghi B, Shen Z, Mayer J, Pasquini R, Nakamae H, Huguet F, Boqué C, Chuah C, Bleickardt E, Bradley-Garelik MB, Zhu C, Szatrowski T, Shapiro D, Baccarani M. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. The New England Journal of Medicine 2010;362:2260-70. [CrossRef]
  • Nagai T, Takeuchi J, Dobashi N, Kanakura Y, Taniguchi S, Ezaki K, Nakaseko C, Hiraoka A, Okada M, Miyazaki Y, Motoji T, Higashihara M, Tsukamoto N, Kiyoi H, Nakao S, Shinagawa K, Ohno R, Naoe T, Ohnishi K, Usui N. Imatinib for newly diagnosed chronic-phase chronic myeloid leukemia: results of a prospective study in Japan. International journal of hematology 2010;92:111-7. [CrossRef]
  • Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON. Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science 1987;235(4784):85-8. [CrossRef]
  • Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, Vermeesch JR, Stul M, Dutta B, Boeckx N, Bosly A, Heimann P Uyttebroeck A, Mentens N, Somers R, MacLeod RA, Drexler HG, Look AT, Gilliland DG, Michaux L, Vandenberghe P Wlodarska I, Marynen P Hagemeijer A. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nature genetics 2004;36:1084-9. [CrossRef]
  • Mullighan CG, Goorha S, Radtke I, Miller CB, Smith EC, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB, Su X, Pui CH, Relling MV, Evans WE, Shurtleff SA, Downing JR. Genome-wide analysis of genetic alterations in acute lym- phoblastic leukaemia. Nature 2007;446:758-64. [CrossRef]
  • Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G, Baer R. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. The EMBO journal 1990;9:3343-51.
  • Finger LR, Kagan J, Christopher G, Kurtzberg J, Hershfield MS, Nowell PC, Croce CM. Involvement of the TCL5 gene on human chromosome 1 in T-cell leu- kemia and melanoma. Proceedings of the National Academy of Sciences of the United States of America 1989;86:5039-43. [CrossRef]
  • Bernard O, Barin C, Charrin C, Mahul DM, Berger R. Characterization of translocation t(1;14)(p32;q11) in a T and in a B acute leukemia. Leukemia 1993;7:1509-13.
  • Curry JD, Smith MT. Measurement of SIL-TAL1 fusion gene transcripts associated with human T-cell lympho- cytic leukemia by real-time reverse transcriptase-PCR. Leukemia research 2003;27:575-82. [CrossRef]
  • Bollag G, Adler F, elMasry N, McCabe PC, Conner E Jr, Thompson P McCormick F, Shannon K. Biochemical characterization of a novel KRAS insertion mutation from a human leukemia. The Journal of biological chemistry 1996;271:32491-4. [CrossRef]
  • Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J. Mutation of CEBPA in familial acute myeloid leukemia. The New England journal of medicine 2004;351:2403-7. [CrossRef]
  • Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF; GIMEMA Acute Leukemia Working Party. Cytoplasmic nucleo- phosmin in acute myelogenous leukemia with a nor- mal karyotype. The New England journal of medicine 2005;352:254-66. [CrossRef]
  • Golemovic M, Verstovsek S, Giles F, Cortes J, Manshouri T, Manley PW, Mestan J, Dugan M, Alland L, Griffin JD, Arlinghaus RB, Sun T, Kantarjian H, Beran M. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clinical Cancer Research 2005;11:4941-7. [CrossRef]
  • Artinyan A, Kim J, Soriano P Chow W, Bhatia S, Ellenhorn JD. Metastatic gastrointestinal stromal tumors in the era of imatinib: improved survival and elimination of socioeconomic survival disparities. Cancer epidemiology, biomarkers & prevention 2008;17:2194-201. [CrossRef]
  • Lanza C, Gaidano G, Cimino G, Lo Coco F, Basso G, Sainati L, Pastore C, Nomdedeu J, Volpe G, Parvis G, et al. p53 gene inactivation in acute lymphoblastic leuke- mia of B cell lineage associates with chromosomal breakpoints at 11q23 and 8q24. Leukemia 1995;9:955-9.
  • Yeargin J, Cheng J, Yu AL, Gjerset R, Bogart M, Haas M. P53 Mutation in Acute T Cell Lymphoblastic Leukemia Is of Somatic Origin and Is Stable during Establishment of T Cell Acute Lymphoblastic Leukemia Cell Lines. The Journal of Clinical Investigation 1993;91:2111-7. [CrossRef]
  • Stams WAG, Boer MLD, Beverloo HB, Meijerink JPP Wering ERV, Schaub GEJ, Pieters R. Expression Levels ofTEL, AML1, and the Fusion ProductsTEL-AML1 and AML1-TEL versus Drug Sensitivity and Clinical Outcome in t(12;21)-Positive Pediatric Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2005;11:2974-80.
  • Mcwhirter JR, Neuteboom STC, Wancewicz EV, Monia BP Downings JR, Murre C. Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc. Natl. Acad. Sci. 1999;96:11464-9. [CrossRef]
  • Rudolph C, Hegazy AN, Neuhoff NV, Steinemann D, Schröck E, Stripecke R, Klein C, Schlegelberger B. Cytogenetic characterization of a BCR-ABL transduced mouse cell line. Cancer Genetics and Cytogenetics 2005;161:51-6. [CrossRef]
  • Caslini C, Serna A, Rossi V, Introna M, Biondi A. Modulation of cell cycle by graded expression of MLL- AF4 fusion oncoprotein. Leukemia 2004;18:1064-71. [CrossRef]
  • Martín-Subero JI, Odero MD, Hernandez R, Cigudosa JC, Agirre X, Saez B, Sanz-García E, Ardanaz MT, Novo FJ, Gascoyne RD, Calasanz MJ, Siebert R. Amplification of IGH/MYC fusion in clinically aggressive IGH/BCL2- positive germinal center B-cell lymphomas. Genes Chromosomes Cancer 2005;43:414-23. [CrossRef]
  • Zalcberg IQ, Silva ML, Abdelhay E, Tabak DG, Ornellas MH, Simões FV, Pucheri W, Ribeiro R, Seuánez HN. Translocation 11;14 in three children with acute lym- phoblastic leukemia of T-cell origin. Cancer Genet. Cytogenet. 1995;84:32-8. [CrossRef]
  • Paietta E, Racevskis J, Bennett JM, Wiernik PH. Differential expression of terminal transferase (TdT) in acute lymphocytic leukaemia expressing myeloid anti- gens and TdT positive acute myeloid leukaemia as compared to myeloid antigen negative acute lympho- cytic leukaemia. Br. J. Haematol. 1993;84:416-22. [CrossRef]
  • Michiels JJ, Adriaansen HJ, Hagemeijer A, Hooijkaas H, van Dongen JJ, Abels J. TdT positive B-cell acute lym- phoblastic leukaemia (B-ALL) without Burkitt charac- teristics. Br. J. Haematol. 1988;68:423-6. [CrossRef] Slingerland JM, Minden MD, Benchimol S. Mutation of the p53 gene in human acute myelogenous leukemia. Blood 1951;77:1500-7.
  • Fenaux P Jonveaux P Quiquandon I, Lai JL, Pignon JM, Lefebvre MHL, Bauters F, Berger R, Kerckaert JP P53 gene mutations in acute myeloid leukemia with 17p monosomy. Blood 1991;78:1652-7.
  • Zhao Z, Zuber J, Flores ED, Lintault L, Kogan SC, Shannon K, Lowe SW. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes & Development 2010;24:1389-402. [CrossRef]
  • Shikami M, Miwa H, Nishii K, Kyo T, Tanaka I, Shiku H, Kita K, Nitta M. Low p53 expression of acute myelo- cytic leukemia cells with t(8;21) chromosome abnor- mality: Association with low p14ARF expression. Leukemia Research 2006;30:379-83. [CrossRef]
  • Trecca D, Longo L, Biondi A, Cro L, Calori R, Grignani F, Maiolo AT, Pelicci PG, Neri A. Analysis of p53 gene mutations in acute myeloid leukemia. American journal of hematology 1994;46:304-9. [CrossRef]
  • Melnick A, Licht JD. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999;93:3167-215.
  • Tanner SM, Austin JL, Leone G, Rush LJ, Plass C, Heinonen K, Mrózek K, Sill H, Knuutila S, Kolitz JE, Archer KJ, Caligiuri MA, Bloomfield CD, de La Chapelle A. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hemato- poiesis and acute leukemia. Proc. Natl. Acad. Sci. 2001;98:13901-6. [CrossRef]
  • Rao VN, Modi WS, Drabkin HD, Patterson D, O’Brien SJ, Papas TS, Reddy ES. The human erg gene maps to chromosome 21, band q22: relationship to the 8; 21 translocation of acute myelogenous leukemia. Oncogene 1988;3:497-500.
  • Zhang Y, Strissel P Strick R, Chen J, Nucifora G, Le Beau MM, Larson RA, Rowley JD. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc. Natl. Acad. Sci. 2002;99:3070-5. [CrossRef]
  • Im M, Lee JK, Lee DY, Hong YJ, Hong SI, Kang HJ, Chang YH. [Near-tetraploidy acute myeloid leukemia with RUNX1-RUNX1T1 rearrangement due to cryptic t(8;21)]. Korean J. Lab. Med. 2009;29:510-4. [CrossRef]
  • Jang JH, Yoo EH, Kim HJ, Kim DH, Jung CW, Kim SH. Acute myeloid leukemia with del(X)(p21) and cryptic RUNX1/RUNX1T1 from ins(8;21)(q22;q22q22) revealed by atypical FISH signals. Ann. Clin. Lab. Sci. 2010;40:80-4.
  • Schnittger S, Bacher U, Haferlach C, Kern W and Haferlach T. Rare CBFB-MYH11 fusion transcripts in AML with inv(16)/t(16;16) are associated with therapy- related AML M4eo, atypical cytomorphology, atypical immunophenotype, atypical additional chromosomal rearrangements and low white blood cell count: a study on 162 patients. Leukemia 2007;21:725-31.
  • Tirado CA, Valdez F, Klesse L, Karandikar NJ, Uddin N, Arbini A, Fustino N, Collins R, Patel S, Smart RL, Garcia R, Doolittle J, Chen W. Acute myeloid leukemia with inv(16) with CBFB-MYH11, 3’CBFB deletion, variant t(9;22) with BCR-ABL1, and del(7)(q22q32) in a pediat- ric patient: case report and literature review. Cancer Genet. Cytogenet. 2010;200:54-9. [CrossRef]
  • Usuki K, Nakatsu M, Kitazume K, Endo M, Osawa M, Iki S, Arai M, Urabe A. CBFB/MYH11 fusion transcripts in a case of acute myelogenous leukemia (M1) with partial deletion of the long arm of chromosome 16. Intern. Med. 1996;35:327-30. [CrossRef]
  • Zent CS. Time to test CLL p53 function. Blood 2010;115:4154-5. [CrossRef]
  • Cordone I, Masi S, Mauro FR, Soddu S, Morsilli O, Valentini T, Vegna ML, Guglielmi C, Mancini F, Giuliacci S, Sacchi A, Mandelli F, Foa R. p53 Expression in B-Cell Chronic Lymphocytic Leukemia: A Marker of Disease Progression and Poor Prognosis. Blood 1998;91:4342-9.
  • Mackus WJM, Kater AP, Grummels A, Evers LM, Hooijbrink B, Kramer MHH, Castro JE, Kipps TJ, Lier RV, Oers MHJV, Eldering E. Chronic lymphocytic leuke- mia cells display p53-dependent drug-induced Puma upregulation. Leukemia 2005;19:427-34. [CrossRef]
  • Cartron G, Linassier C, Bremond JL, Desablens B, Georget MT, Fimbel B, Luthier F, Dutel JL, Lamagnere JP Colombat P CD5 negative B-cell chronic lympho- cytic leukemia: clinical and biological features of 42 cases. Leuk. Lymphoma 1998;31:209-16. [CrossRef]
  • Goller ME, Kneitz C, Mehringer C, Müller K, Jelley- Gibbs DM, Gosselin EJ, Wilhelm M, Tony HP Regulation of CD23 isoforms on B-chronic lymphocytic leukemia. Leuk. Res. 2002;795-802. [CrossRef]
  • Fournier S, Delespesse G, Rubio M, Biron G, Sarfati M. CD23 antigen regulation and signaling in chronic lym- phocytic leukemia. J. Clin. Invest. 1992;89:1312-21. [CrossRef]
  • Ghia P Guida G, Stella S, Gottardi D, Geuna M, Strola G, Scielzo C, Caligaris-Cappio F. The pattern of CD38 expression defines a distinct subset of chronic lympho- cytic leukemia (CLL) patients at risk of disease pro- gression. Blood 2003;101:1262-9. [CrossRef]
  • Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, Zhao H, Ibbotson RE, Orchard JA, Davis Z, Stetler-Stevenson M, Raffeld M, Arthur DC, Marti GE, Wilson WH, Hamblin TJ, Oscier DG, Staudt LM. ZAP-70 expression identifies a chronic lymphocyt- ic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003;101:4944-51. [CrossRef]
  • Lübbert M, Miller CW, Crawford L, Koeffler HP p53 in Chronic Myelogenous Leukemia Study of Mechanisms of Differential Expression. J. Exp. Med. 1988;167:873-86. [CrossRef]
  • Tzankov A, Bourgau C, Kaiser A, Zimpfer A, Maurer R, Pileri SA, Went P Dirnhofer S. Rare expression of T-cell markers in classical Hodgkin’s lymphoma. Mod. Pathol. 2005;18:1542-9.
  • Zukerberg LR, Collins AB, Ferry JA, Harris NL. Coexpression of CD15 and CD20 by Reed-Sternberg Cells in Hodgkin’s Disease. Am. J. Pathol. 1991;139:475-83.
  • Tzankov A, Krugmann J, Fend F, Fischhofer M, Greil R, Dirnhofer S. Prognostic Significance of CD20 Expression in Classical Hodgkin Lymphoma: A Clinicopathological Study of 119 Cases. Clinical Cancer Research 2003;9:1381-6.
  • Tzardi M, Kouvidou C, Panayiotides I, Stefanaki K, Rontogianni D, Zois E, Koutsoubi K, Eliopoulos G, Delides G, and Kanavaros P p53 protein expression in non-Hodgkin’s lymphoma. Comparative study with the wild type p53 induced proteins mdm2 and p21/waf1. Clin. Mol. Pathol. 1996;49:M278-82. [CrossRef]
  • Piris MA, Villuendas R, Martinez JC, Sanchez-Beato M, Orradre JL, Mateo MS, Martinez P p53 expression in non-Hodgkin’s lymphomas: a marker of p53 inactiva- tion? Leuk. Lymphoma 1995;17:35-42. [CrossRef]
  • Kaleem Z, McGuire MH, Caracioni AC, Leonard RL, Pathan MH, Lessmann EA, Chan WC. Composite B-Cell and T-Cell Non-Hodgkin Lymphoma of the Tibia. Am. J. Clin. Pathol. 2005;123:215-21. [CrossRef]
  • Lee JT, Innes DJ, Williams ME. Sequential bcl-2 and c-myc Oncogene Rearrangements Associated with the Clinical Transformation of Non-Hodgkin’s Lymphoma. J. Clin. Invest. 1989;84:1454-9. [CrossRef]
  • Dierlamm J, Baens M, Wlodarska I, Ouzounova MS, Hernandez JM, Hossfeld DK, Peeters CDW, Hagemeijer A, Berghe HV, Marynen P The Apoptosis Inhibitor Gene API2 and a Novel 18q Gene, MLT, Are Recurrently Rearranged in the t(11;18)(q21;q21) Associated With Mucosa-Associated Lymphoid Tissue Lymphomas. Blood 1999;93:3601-9.
  • Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G, Raderer M, and Chott A. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2003;101:2335-9. [CrossRef]
  • Smith MR. Non-Hodgkin’s lymphoma. Current Problems in Cancer 1996;20:6-77. [CrossRef]
  • Portier M, Molès JP Mazars GR, Jeanteur P Bataille R, Klein B, Theillet C. p53 and RAS gene mutations in multiple myeloma. Oncogene 1992;7:2539-43.
  • Neri A, Baldini L, Trecca D, Cro L, Polli E and Maiolo AT. p53 gene mutations in multiple myeloma are associ- ated with advanced forms of malignancy. Blood 1993;81:128-35.
  • Greil R, Fasching B, Loidl P and Huber H. Expression of the c-myc proto-oncogene in multiple myeloma and chronic lymphocytic leukemia: an in situ analysis. Blood 1991;l78:180-91.
  • Cobbold LC, Wilson LA, Sawicka K, King HA, Kondrashov AV, Spriggs KA, Bushell M, Willis AE. Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interac- tions with and expression of PTB-1 and YB-1. Oncogene 2010;29:2884-91. [CrossRef]
  • Pettersson M, Wiklund HJ, Larsson LG, Sundstrom C, Givol I, Tsujimoto Y and Nilsson K. Expression of the bcl-2 gene in human multiple myeloma cell lines and normal plasma cell. Blood 1992;l79:495-50.
  • Pizzatti L, Sá LA, de Souza JM, Bisch PM, Abdelhay E. Altered protein profile in chronic myeloid leukemia chronic phase identified by a comparative proteomic study. Biochimica et Biophysica Acta
  • Barnidge DR, Tschumper RC, Jelinek DF, Muddiman DC, Kay NE. Protein expression profiling of CLL B cells using replicate off-line strong cation exchange chro- matography and LC-MS/MS. Journal of Chromatography B 2005;819:33-9. [CrossRef]
  • Gez S, Crossett B, Christopherson RI. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions. Biochimica et Biophysica Acta 2007;1774: 1173-83.
  • Zhang MZ, Sun ZC, Fu XR, Nan FF, Fan QX, Wu XA, Geng L, Ma W, Wang RL. Analysis of serum proteome profiles of non-Hodgkin lymphoma for biomarker iden- tification. J. Proteomics 2009;72:952-9. [CrossRef]
  • Page MJ, Amess B, Townsend RR, Parekh R, Herath A, Brusten L, Zvelebil MJ, Stein RC, Waterfield MD, Davies SC, O’Hare MJ. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc. Natl. Acad. Sci. 1999;96:12589-94. [CrossRef]
  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti- Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6:17-32. [CrossRef]
  • Colavita I, Esposito N, Martinelli R, Catanzano F, Melo JV, Pane F, Ruoppolo M, Salvatore F. Gaining insights into the Bcr-Abl activity-independent mechanisms of resistance to imatinib mesylate in KCL22 cells: a com- parative proteomic approach. Biochim. Biophys. Acta 2010;1804:1974-87.
  • He J, Shen D, Chung DU, Saxton RE, Whitelegge JP Faull KF, Chang HR. Tumor proteomic profiling predicts the susceptibility of breast cancer to chemotherapy. Int. J. Oncol. 2009;35:683-92.
  • Rawstron AC, de Tute R, Jack AS, Hillmen P Flow cyto- metric protein expression profiling as a systematic approach for developing disease-specific assays: iden- tification of a chronic lymphocytic leukaemia-specific assay for use in rituximab-containing regimens. Leukemia 2006;20:2102-10. [CrossRef]
  • Ou K, Kesuma D, Ganesan K, Yu K, Soon SY, Lee SY, Goh XP Hooi M, Chen W, Jikuya H, Ichikawa T, Kuyama H, Matsuo E, Nishimura O, Tan P Quantitative profiling of drug-associated proteomic alterations by combined 2-nitrobenzenesulfenyl chloride (NBS) isotope labeling and 2DE/MS identification. J. Proteome Res. 2006;5:2194-206. [CrossRef]
  • Gavin AC, Aloy P Grandi P Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P Russell RB, Furga GS. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006;440:631-6. [CrossRef]
  • Gavin AC, Bosche M, Krause R, Grandi P Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P Seraphin B, Kuster B, Neubauer G, Furga GS. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002;415:141-7. [CrossRef]
  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002;415:180-3. [CrossRef]
  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP Canadien V, Lalev A, Mena F, Wong P Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006;440:637-43. [CrossRef]
  • Washburn MP Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology 2001;19:242-7. [CrossRef]
  • Ahram M. An introduction into proteomics and its clinical applications. Saudi Med. J. 2007;28:499-507.
  • MacBeath G, Schreiber SL. Printing proteins as micro- arrays for high-throughput function determination. Science 2000;289:1760-3.
  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P Dean RA, Gerstein M, Snyder M. Global analysis of protein activities using proteome chips. Science 2001;293:2101-5. [CrossRef]
  • Zhu H, Klemic JF, Chang S, Bertone P Casamayor A, Klemic KG, Smith D, Gerstein M, Reed MA, Snyder M. Analysis of yeast protein kinases using protein chips. Nature Genetics 2000;26:283-9. [CrossRef]
  • Bhat S, Patil A, Rai L, Kartha VB, Santhosh C. Protein profile analysis of cellular samples from the cervix for the objective diagnosis of cervical cancer using HPLC- LIF. Journal of Chromatography B, 2010;878:3225-30. [CrossRef]
  • Vidyasagar MS, Kodali M, Balu PN, Baijal G, Vadhiraja BM, Bhat RA, Fernandes DJ, Krishna CM. Serum pro- tein profile studies of cervical cancers in monitoring of tumor response to radiotherapy using HPLC-LIF: A pilot study. Medical Laser Application 2009;24:165-74. [CrossRef]
  • O’Farrell PH. High Resolution Two-Dimensional Electrophoresis of Proteins. The Journal of Biological Chemistry 1975;250:4007-21.
  • 122. Bertone P Snyder M. Advances in functional protein micro- array technology. The FEBS Journal 2005;272:5400-11. [CrossRef]
  • Sreekumar A, Nyati MK, Varambally S, Barrette TR, Ghosh D, Lawrence TS, Chinnaiyan AM. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Research 2001;61:7585-93.
  • Kumar KK, Chowdary MVP Mathew S, Rao L, Krishna CM, Kurien J. Protein profile study of breast-tissue homogenates by HPLC-LIF. Journal of BIOPHOTONICS 2009;2:313-21. [CrossRef]
  • Patil A, Prabhu V, Choudhari KS, Unnikrishnan VK, George SD, Ongole R, Pai KM, Shetty JK, Bhat S, Kartha VB, Chidangil S. Evaluation of high-performance liquid chromatography laser-induced fluorescence for serum protein profiling for early diagnosis of oral cancer. J Biomed Opt. 2010;15:067007. [CrossRef]
  • Venkatakrishna K, Kartha VB, Pai KM, Krishna CM, Ravikiran O, Kurien J, et al. HPLC-LIF for early detec- tion of oral cancer. Curr. Sci. 2003;84:551-7.
  • Aebersold R, Mann M. Mass spectrometry-based pro- teomics. Nature 2003;422:198-207. [CrossRef]
  • Wolters DA, Washburn MP Yates JR 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 2001;73:5683-90. [CrossRef]
  • Issaq HJ, and Veenstra TD. Two-dimensional polyacryl- amide gel electrophoresis (2D-PAGE): advances and perspectives. BioTechniques 25th Anniversary 2008;44:697-700.
  • Sydor JR, Nock S. Protein expression profiling arrays: tools for the multiplexed high-throughput analysis of proteins. Proteome Sci. 2003;1:3. [CrossRef]
  • Cho SY, Lee EY, Lee JS, Kim HY, Park JM, Kwon MS, Park YK, Lee HJ, Kang MJ, Kim JY, Yoo JS, Park SJ, Cho JW, Kim HS, Paik YK. Efficient prefractionation of low-abun- dance proteins in human plasma and construction of a two-dimensional map. Proteomics 2005;5:3386-96. [CrossRef]
  • Spisák S, Guttman A. Biomedical applications of protein microarrays. Curr. Med. Chem. 2009;16:2806-15. [CrossRef]
  • Spisak S, Tulassay Z, Molnar B, Guttman A. Protein microchips in biomedicine and biomarker discovery. Electrophoresis 2007;28:4261-73. [CrossRef]
APA MOHAMED ŞANLI G, TURAN T, EKİZ ATAKAN H, Baran Y (2011). The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. , 1 - 14.
Chicago MOHAMED ŞANLI Gülşah,TURAN TAYLAN,EKİZ ATAKAN Hüseyin,Baran Yusuf The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. (2011): 1 - 14.
MLA MOHAMED ŞANLI Gülşah,TURAN TAYLAN,EKİZ ATAKAN Hüseyin,Baran Yusuf The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. , 2011, ss.1 - 14.
AMA MOHAMED ŞANLI G,TURAN T,EKİZ ATAKAN H,Baran Y The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. . 2011; 1 - 14.
Vancouver MOHAMED ŞANLI G,TURAN T,EKİZ ATAKAN H,Baran Y The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. . 2011; 1 - 14.
IEEE MOHAMED ŞANLI G,TURAN T,EKİZ ATAKAN H,Baran Y "The importance of protein profiling in the diagnosis and treatment of hematologic malignancies." , ss.1 - 14, 2011.
ISNAD MOHAMED ŞANLI, Gülşah vd. "The importance of protein profiling in the diagnosis and treatment of hematologic malignancies". (2011), 1-14.
APA MOHAMED ŞANLI G, TURAN T, EKİZ ATAKAN H, Baran Y (2011). The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. Turkish Journal of Hematology, 28(1), 1 - 14.
Chicago MOHAMED ŞANLI Gülşah,TURAN TAYLAN,EKİZ ATAKAN Hüseyin,Baran Yusuf The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. Turkish Journal of Hematology 28, no.1 (2011): 1 - 14.
MLA MOHAMED ŞANLI Gülşah,TURAN TAYLAN,EKİZ ATAKAN Hüseyin,Baran Yusuf The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. Turkish Journal of Hematology, vol.28, no.1, 2011, ss.1 - 14.
AMA MOHAMED ŞANLI G,TURAN T,EKİZ ATAKAN H,Baran Y The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. Turkish Journal of Hematology. 2011; 28(1): 1 - 14.
Vancouver MOHAMED ŞANLI G,TURAN T,EKİZ ATAKAN H,Baran Y The importance of protein profiling in the diagnosis and treatment of hematologic malignancies. Turkish Journal of Hematology. 2011; 28(1): 1 - 14.
IEEE MOHAMED ŞANLI G,TURAN T,EKİZ ATAKAN H,Baran Y "The importance of protein profiling in the diagnosis and treatment of hematologic malignancies." Turkish Journal of Hematology, 28, ss.1 - 14, 2011.
ISNAD MOHAMED ŞANLI, Gülşah vd. "The importance of protein profiling in the diagnosis and treatment of hematologic malignancies". Turkish Journal of Hematology 28/1 (2011), 1-14.