Yıl: 2013 Cilt: 4 Sayı: 4 Sayfa Aralığı: 550 - 561 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

İndüklenmiş pluripotent kök hücreler ve hücre tedavisi

Öz:
İnsan embriyonik kök hücreleri embriyonun blastosist aşamasındaki iç hücre kitlesinden elde edilir. Kendi ken- dilerini sınırsız yenileyebilme özelliklerinin yanında pluri-potent olmaları, yani üç farklı embriyonik tabakadan kö-ken alan hücre tiplerine farklılaşabilme potansiyelleri ilehücre tedavisine yönelik büyük umut vaat etmektedirler.Ancak derivasyonlarındaki etik ve yasal problemler ne-deniyle, pluripotent özelliklerinin tedavi amaçlı kullanımı henüz gerçekleştirilememektedir. Son yıllarda, erişkin do- kulardan elde edilen hücrelerin yeniden programlanarakembriyonik karakter taşıyan pluripotent özellikteki hücre-lere dönüşebilecekleri gösterilmiştir. Böylelikle, yeniden programlanan somatik hücrelerin, in vitro olarak istenilen hücre tipine yönlendirilmiş farklılaştırılması ve rejeneratif tıp alanında kullanılma ihtimali kuvvetlenmiştir. Pluripo- tent özellik kazandırılan bu hücreler indüklenmiş pluripo-tent kök hücreler olarak tanımlanmış olsa da, pluripotent özelliğin mekanizması henüz tam anlamıyla açıklanama-mıştır. Yine de, indüklenmiş pluripotent kök hücre tek-nolojisi, insan hastalık modellerinin çalışılması, yeni ilaç geliştirilmesi ve hücre tedavisine yönelik yeni yaklaşımlarönermesi açısından önem arzetmektedir. Kendi kendileri-ni yenileyebilmeleri ve insan vücudundaki tüm hücre tiple-rine farklılaşabilme potansiyellerinin yanında, embriyonik kök hücrelerin neden olduğu etik kaygılardan uzak olma- ları ve olası hücre tedavisi uygulamalarında hastaya özgütasarlanabilecek olmaları nedeniyle son yıllarda bilim dünyasında büyük ilgi uyandırmaktadırlar. Bu derlemedegeçmişten günümüze indüklenmiş pluripotent kök hücre teknolojisine ve bu hücre grubunun hücre tedavisindekiyerine değinilecektir.
Anahtar Kelime:

Konular: Biyoloji Genel ve Dahili Tıp Hücre ve Doku Mühendisliği Hücre Biyolojisi

Induced pluripotent stem cells and cell therapy

Öz:
Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Re- cently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripo- tency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed.
Anahtar Kelime:

Konular: Biyoloji Genel ve Dahili Tıp Hücre ve Doku Mühendisliği Hücre Biyolojisi
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Em- bryonic stem cell lines derived from human blasto- cysts. Science 1998;282:1145-1147.
  • 2. Condic ML, Rao M. Alternative sources of pluripotent stem cells: ethical and scientific issues revisited. Stem Cells Dev 2010;19:1121-1129.
  • 3. Gurdon JB, Melton DA. Nuclear reprogramming in cells. Science 2008;322:1811-1815.
  • 4. Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear re- programming of somatic cells after fusion with human embryonic stem cells. Science 2005;309:1369-1373.
  • 5. Wilmut I, Schnieke AE, Mcwhir J, Campbell KHS. Vi- able offspring derived from fetal and adult mammalian cells. Nature 1997;385:810-813.
  • 6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676.
  • 7. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872.
  • 8. Stadtfeld M, Nagaya M, Utikal J, et al. Induced plu- ripotent stem cells generated without viral integration. Science 2008;322:945-949.
  • 9. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced plu- ripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920.
  • 10. Fusaki N, Ban H, Nishiyama A, et al. Efficient induc- tion of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 2009;85:348-462.
  • 11. Okita K, Hong H, Takahashi K, Yamanaka S. Gen- eration of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 2010;5:418-428.
  • 12. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced plu- ripotent stem cells. Nature 2009;458:766-770.
  • 13. Osteil P, Tapponnier Y, Markossian S, et al. Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency. Biol Open 2013;2:613-628.
  • 14. Liu H, Zhu F, Yong J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibro- blasts. Cell Stem Cell 2008;3:587-590.
  • 15. Jia F, Wilson KD, Sun N, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods 2010;7:197-199.
  • 16. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fi- broblasts with only Oct4 and Sox2. Nat Biotechnol 2008;26:1269-1275.
  • 17. Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009;4:472- 476.
  • 18. Pandian GN, Nakano Y, Sato S, et al. A synthetic small molecule for rapid induction of multiple pluripo- tency genes in mouse embryonic fibroblasts. Sci Rep 2012;2:544.
  • 19. Zhang Z, Gao Y, Gordon A, et al. Efficient generation of fully reprogrammed human iPS cells via polycis- tronic retroviral vector and a new cocktail of chemical compounds. PloS One 2011;6:e26592.
  • 20. Li W, Ding S. Small molecules that modulate embry- onic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 2010;31:36-45.
  • 21. Yan X, Qin H, Qu C, et al. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 2010;19:469- 480.
  • 22. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998;95:379-391.
  • 23. Avilion AA, Nicolis SK, Pevny LH, et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003;17:126-140.
  • 24. Chambers I, Silva J, Colby D, et al. Nanog safeguards pluripotency and mediates germline development. Nature 2007;450:1230-1234.
  • 25. Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005;6:635-645.
  • 26. Rowland BD, Bernards R, Peeper DS. The KLF4 tu- mour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005;7:1074-1082.
  • 27. Li Y, McClintick J, Zhong L, et al. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood 2005;105:635-637.
  • 28. Cartwright P, McLean C, Sheppard A, et al. LIF/ STAT3 controls ES cell self-renewal and pluripoten- cy by a Myc-dependent mechanism. Development 2005;132:885-896.
  • 29. Wernig M, Meissner A, Foreman R, et al. In vitro re- programming of fibroblasts into a pluripotent ES-cell- like state. Nature 2007;448:318-324.
  • 30. Maherali N, Sridharan R, Xie W, et al. Directly repro- grammed fibroblasts show global epigenetic remodel- ing and widespread tissue contribution. Cell Stem Cell 2007;1:55-70.
  • 31. Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 2004;275:269-286.
  • 32. Kuijk EW, Chuva de Sousa Lopes SM, Geijsen N, et al. The different shades of mammalian pluripotent stem cells. Hum Reprod Update 2011;17:254-271.
  • 33. Tarnowski M, Sieron AL. Adult stem cells and their ability to differentiate. Med Sci Monit 2006;12:154- 163.
  • 34. Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic dif- ferentiation in vitro. Nat Biotechnol 2000;18:399-404.
  • 35. Blau HM, Chiu CP, Webster C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 1983;32:1171-1180.
  • 36. Wakayama T, Perry AC, Zuccotti M, et al. Full-term de- velopment of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998;394:369-374.
  • 37. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell 2009;4:487-492.
  • 38. Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci 2000;113:5-10.
  • 39. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005;19:1129-1155.
  • 40. Stojkovic M, Lako M, Stojkovic P, et al. Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells 2004;22:790-797.
  • 41. Khoo ML, McQuade LR, Smith MS, et al. Growth and differentiation of embryoid bodies derived from human embryonic stem cells: effect of glucose and basic fibroblast growth factor. Biol Reprod 2005;73:1147- 1156.
  • 42. Itskovitz-Eldor J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000;6:88-95.
  • 43. Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differenti- ated cells. Nature 2008;454:766-770.
  • 44. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007;448:191-195.
  • 45. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007;448:196- 199.
  • 46. Matsui Y, Zsebo K, Hogan BL. Derivation of pluripo- tential embryonic stem cells from murine primordial germ cells in culture. Cell 1992;70:841-847.
  • 47. Johnson BV, Rathjen J, Rathjen PD. Transcriptional control of pluripotency: decisions in early development. Curr Opin Genet Dev 2006;16:447-454.
  • 48. Boyer LA, Mathur D, Jaenisch R. Molecular control of pluripotency. Curr Opin Genet Dev 2006;16:455-462.
  • 49. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000;24:372-376.
  • 50. Keramari M, Razavi J, Ingman KA, et al. Sox2 is es- sential for formation of trophectoderm in the preim- plantation embryo. PloS One 2010;5:e13952.
  • 51. Masui S, Nakatake Y, Toyooka Y, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007;9:625-635.
  • 52. Rodda DJ, Chew JL, Lim LH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005;280:24731-24737.
  • 53. Hart AH, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn 2004;230:187-198.
  • 54. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003;113:631-642.
  • 55. Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 2006;133:1193-1201.
  • 56. Hyslop L, Stojkovic M, Armstrong L, et al. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 2005;23:1035-1043.
  • 57. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008;26:101-106.
  • 58. Feng B, Jiang J, Kraus P, et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 2009;11:197-203.
  • 59. Feng B, Ng JH, Heng JC, Ng HH. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 2009;4:301-312.
  • 60. Peerani R, Rao BM, Bauwens C, et al. Niche-mediat- ed control of human embryonic stem cell self-renewal and differentiation. EMBO J 2007;26:4744-4755.
  • 61. Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional net- work in embryonic stem cells. Cell 2008;133:1106- 1117.
  • 62. Sekkaï D, Gruel G, Herry M, et al. Microarray analysis of LIF/Stat3 transcriptional targets in embryonic stem cells. Stem Cells 2005;23:1634-1642.
  • 63. Stewart RS, Stojkovic M, Lako M. Mechanisms of self- renewal in human embryonic stem cells. Eur J Cancer 2006;42:1257-1272.
  • 64. James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 2005;132:1273-1282.
  • 65. Xu RH, Sampsell-Barron TL, Gu F, et al. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 2008;3:196- 206.
  • 66. Vallier L, Reynolds D, Pedersen RA. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol 2004;275:403-421.
  • 67. Beattie GM, Lopez AD, Bucay N, et al. Activin A main- tains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 2005;23:489- 495.
  • 68. Vallier L, Mendjan S, Brown S, et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 2009;136:1339-1349.
  • 69. Zhang P, Li J, Tan Z, et al. Short-term BMP-4 treat- ment initiates mesoderm induction in human embry- onic stem cells. Blood 2008;111:1933-1941.
  • 70. Lanner F, Rossant J. The role of FGF/Erk signaling in pluripotent cells. Development 2010;137:3351-3360.
  • 71. Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005;16:233- 247.
  • 72. Dvorak P, Dvorakova D, Koskova S, et al. Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 2005;23:1200-1211.
  • 73. Ding VMY, Boersema PJ, Foong LY, et al. Tyrosine phosphorylation profiling in FGF-2 stimulated human embryonic stem cells. PloS One 2011;6:e17538.
  • 74. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 2004;70:837-845.
  • 75. Wang G, Zhang H, Zhao Y, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun 2005;330:934-942.
  • 76. Xiao L, Yuan X, Sharkis SJ. Activin A maintains self- renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 2006;24:1476-1486.
  • 77. Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluri- potency of human embryonic stem cells. J Cell Sci 2005;118:4495-4509.
  • 78. Baxter MA, Camarasa MV, Bates N, et al. Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-re- newal of human embryonic stem cell lines. Stem Cell Res 2009;3:28-38.
  • 79. Armstrong L, Hughes O, Yung S, et al. The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcription- al profiling and functional analysis. Hum Mol Genet 2006;15:1894-1913.
  • 80. Pyle AD, Lock LF, Donovan PJ. Neurotrophins medi- ate human embryonic stem cell survival. Nat Biotech- nol 2006;24:344-350.
  • 81. McLean AB, D’Amour KA, Jones KL, et al. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylino- sitol 3-kinase signaling is suppressed. Stem Cells 2007;25:29-38.
  • 82. Chen YG, Li Z, Wang XF. Where PI3K/Akt meets Smads: the crosstalk determines human embryonic stem cell fate. Cell Stem Cell 2012;10:231-232.
  • 83. Li L, Wang S, Jezierski A, et al. A unique interplay between Rap1 and E-cadherin in the endocytic path- way regulates self-renewal of human embryonic stem cells. Stem Cells 2010;28:247-257.
  • 84. Park IH, Lerou PH, Zhao R, et al. Generation of human-induced pluripotent stem cells. Nat Protoc 2008;3:1180-1186.
  • 85. Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 2009;460:49- 52.
  • 86. Kim JB, Greber B, Araúzo-Bravo MJ, et al. Direct re- programming of human neural stem cells by OCT4. Nature 2009;461:649-643.
  • 87. Aasen T, Raya A, Barrero MJ, et al. Efficient and rap- id generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008;26:1276- 1284.
  • 88. Streckfuss-Bömeke K, Wolf F, Azizian A, et al. Com- parative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratino- cytes, and skin fibroblasts. Eur Heart J 2012;Epub ahead of print.
  • 89. Loh YH, Agarwal S, Park IH, et al. Generation of in- duced pluripotent stem cells from human blood. Blood 2009;113:5476-5479.
  • 90. Cashen AF, Lazarus HM, Devine SM. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF? Bone Marrow Transplant 2007;39:577- 588.
  • 91. Liu T, Zou G, Gao Y, et al. High efficiency of repro- gramming CD34+ cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev 2012;21:2322-2332.
  • 92. Su RJ, Baylink DJ, Neises A, et al. Efficient Generation of Integration-Free iPS Cells from Human Adult Peripheral Blood Using BCL-XL Together with Yamanaka Factors. PloS One 2013;8:e64496.
  • 93. Merling RK, Sweeney CL, Choi U, et al. Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 2013;121:e98-107.
  • 94. Okita K, Yamakawa T, Matsumura Y, et al. An efficient nonviral method to generate integration-free human- induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 2013;31:458-466.
  • 95. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tis- sue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279-4295.
  • 96. Sun N, Panetta NJ, Gupta DM, et al. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 2009;106:15720-15725.
  • 97. Qu X, Liu T, Song K, et al. Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder- free conditions. PloS One 2012;7:e48161.
  • 98. Aoki T, Ohnishi H, Oda Y, et al. Generation of in- duced pluripotent stem cells from human adipose- derived stem cells without c-MYC. Tissue Eng Part A 2010;16:2197-2206.
  • 99. Meng X, Neises A, Su RJ, et al. Efficient reprogram- ming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol Ther 2012;20:408-416.
  • 100. Giorgetti A, Montserrat N, Rodriguez-Piza I, et al. Generation of induced pluripotent stem cells from hu- man cord blood cells with only two factors: Oct4 and Sox2. Nat Protoc 2010;5:811-820.
  • 101. Haase A, Olmer R, Schwanke K, et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 2009;5:434-441.
  • 102. Nishishita N, Takenaka C, Fusaki N, Kawamata S. Generation of human induced pluripotent stem cells from cord blood cells. J Stem Cells 2011;6:101-108.
  • 103. Hu K, Yu J, Suknuntha K, et al. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 2011;117:e109-119.
  • 104. Loh YH, Hartung O, Li H, et al. Reprogramming of T cells from human peripheral blood. Cell Stem Cell 2010;7:15-19.
  • 105. Staerk J, Dawlaty MM, Gao Q, et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 2010;7:20-24.
  • 106. Aoi T, Yae K, Nakagawa M, et al. Generation of plu- ripotent stem cells from adult mouse liver and stom- ach cells. Science 2008;321:699-702.
  • 107. Winkler T, Cantilena A, Métais JY, et al. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells. Stem Cells 2010;28:687-694.
  • 108. Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syn- drome. N Engl J Med 2010;363:1397-1409.
  • 109. Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Na- ture 2011;471:225-229.
  • 110. Matsa E, Rajamohan D, Dick E, et al. Drug evalua- tion in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J 2011;32:952-962.
  • 111. Juopperi TA, Kim WR, Chiang CH, et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 2012;5.
  • 112. Fan Y, Luo Y, Chen X, et al. Generation of human β-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev 2012;58:404-409.
  • 113. Ooi L, Sidhu K, Poljak A, et al. Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm 2013;120:103-111.
  • 114. Byers B, Lee HL, Reijo Pera R. Modeling Parkin- son’s disease using induced pluripotent stem cells. Curr Neurol Neurosci Rep 2012;12:227-234.
  • 115. Raya A, Rodríguez-Pizà I, Guenechea G, et al. Dis- ease-corrected haematopoietic progenitors from Fan- coni anaemia induced pluripotent stem cells. Nature 2009;460:53-59.
  • 116. Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells gener- ated from autologous skin. Science 2007;318:1920- 1923.
  • 117. Xu D, Alipio Z, Fink LM, et al. Phenotypic correc- tion of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA 2009;106:808-813.
  • 118. Zhou L, Wang W, Liu Y, et al. Differentiation of in- duced pluripotent stem cells of swine into rod photo- receptors and their integration into the retina. Stem Cells 2011;29:972-980.
  • 119. Mellough CB, Sernagor E, Moreno-Gimeno I, et al. Efficient stage-specific differentiation of human plu- ripotent stem cells toward retinal photoreceptor cells. Stem Cells 2012;30:673-686.
  • 120. Marchetto MC, Yeo GW, Kainohana O, et al. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PloS One 2009;4:e7076.
  • 121. Ghosh Z, Wilson KD, Wu Y, et al. Persistent donor cell gene expression among human induced pluripo- tent stem cells contributes to differences with human embryonic stem cells. PloS One 2010;5:e8975.
  • 122. Ramos-Mejia V, Muñoz-Lopez M, Garcia-Perez JL, Menendez P. iPSC lines that do not silence the ex- pression of the ectopic reprogramming factors may display enhanced propensity to genomic instability. Cell Res 2010;20:1092-1095.
  • 123. Newman AM, Cooper JB. Lab-specific gene expres- sion signatures in pluripotent stem cells. Cell Stem Cell 2010;7:258-262.
  • 124. Lowry WE. Does transcription factor induced pluripo- tency accurately mimic embryo derived pluripotency? Curr Opin Genet Dev 2012;22:429-434.
APA İSKENDER B, Canatan H (2013). İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. , 550 - 561.
Chicago İSKENDER Banu,Canatan Halit İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. (2013): 550 - 561.
MLA İSKENDER Banu,Canatan Halit İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. , 2013, ss.550 - 561.
AMA İSKENDER B,Canatan H İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. . 2013; 550 - 561.
Vancouver İSKENDER B,Canatan H İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. . 2013; 550 - 561.
IEEE İSKENDER B,Canatan H "İndüklenmiş pluripotent kök hücreler ve hücre tedavisi." , ss.550 - 561, 2013.
ISNAD İSKENDER, Banu - Canatan, Halit. "İndüklenmiş pluripotent kök hücreler ve hücre tedavisi". (2013), 550-561.
APA İSKENDER B, Canatan H (2013). İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. Journal of Clinical and Experimental Investigations, 4(4), 550 - 561.
Chicago İSKENDER Banu,Canatan Halit İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. Journal of Clinical and Experimental Investigations 4, no.4 (2013): 550 - 561.
MLA İSKENDER Banu,Canatan Halit İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. Journal of Clinical and Experimental Investigations, vol.4, no.4, 2013, ss.550 - 561.
AMA İSKENDER B,Canatan H İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. Journal of Clinical and Experimental Investigations. 2013; 4(4): 550 - 561.
Vancouver İSKENDER B,Canatan H İndüklenmiş pluripotent kök hücreler ve hücre tedavisi. Journal of Clinical and Experimental Investigations. 2013; 4(4): 550 - 561.
IEEE İSKENDER B,Canatan H "İndüklenmiş pluripotent kök hücreler ve hücre tedavisi." Journal of Clinical and Experimental Investigations, 4, ss.550 - 561, 2013.
ISNAD İSKENDER, Banu - Canatan, Halit. "İndüklenmiş pluripotent kök hücreler ve hücre tedavisi". Journal of Clinical and Experimental Investigations 4/4 (2013), 550-561.