Yıl: 2014 Cilt: 38 Sayı: 1 Sayfa Aralığı: 31 - 39 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay

Öz:
Nanogenotoxicity is an emergent field, relevant for estimating the potential genotoxic risk of nanomaterials. In this study we investigated the genotoxic potential of zinc oxide (ZnO, ≤35 and 50 nm) and titanium dioxide (TiO2, 21 and 50 nm) nanoparticles (NPs) in the nuclei of Allium cepa root meristem cells by using a modified alkaline comet assay. ZnO and TiO2 NPs were supplied to cells treated in vitro at 3 different concentrations (10, 100, and 1000 μg/mL). For the comet assay, our results indicate a dose-dependent increment in DNA damage in cells exposed to 100 and 1000 μg/mL of ZnO NPs (≤35 and 50 nm) for percentage of DNA tail (% DNA tail). On the other hand, the results from TiO2 NPs indicated that the DNA damage in the cells exposed to only the highest concentration (1000 μg/mL) of TiO2 NPs (21 nm) is statistically significant in comparison to the control cells, while all concentrations of TiO2 NPs (50 nm) are stat
Anahtar Kelime:

Konular: Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafari M, Akbari HR, Rad HG (2011). Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomed 6: 1117–1127.
  • Akyıl D, Oktay S, Liman R, Eren Y, Konuk M (2012). Genotoxic and mutagenic effects of aqueous extract from aerial parts of Achillea teretifolia. Turk J Biol 36: 441–448.
  • Baan RA (2007). Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: recent evaluations by an IARC Monographs Working Group. Inhal Toxicol 19: 213–228.
  • Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P (2009). In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24: 245–251.
  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77: 347–357.
  • Bhattacharya K, Davoren M, Boertz J, Schins RPF, Hoffmann E, Dopp E (2009). Titanium dioxide nanoparticles induce oxidative stress and DNA adduct formation but not DNA breakage in human lung cells. Part Fibre Toxicol 21: 6–17.
  • Demir E, Kaya N, Kaya B (2011). Evaluation of DNA damage in Capsicum annuum L. exposed to spinosad in the comet assay. Fresen Environ Bull 20: 1926–1930.
  • Demir E (2012). In vivo genotoxicity assessment of diflubenzuron and spinosad in Drosophila melanogaster with the comet assay using haemocytes and the SMART assay. Fresen Environ Bull 21: 3894–3900.
  • Demir E, Kaya B (2013). Studies on the genotoxic properties of four benzyl derivatives in the in vivo comet assay using haemocytes of Drosophila melanogaster. Fresen Environ Bull 22: 1590– 1596.
  • Dufour EK, Kumaravel T, Nohynek GJ, Kirkland D, Toutain H (2006). Clastogenicity, photo-clastogenicity or pseudo-photo- clastogenicity: genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat Res 607: 215–224.
  • Fairbairn DW, Olive PL, O’Neill KL (1995). The comet assay: a comprehensive review. Mutat Res 339: 37–59.
  • Falck GC, Lindberg HK, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H (2009). Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol 28: 339–352.
  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81: 1253–1262.
  • Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M (2012). Cytotox- icity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 7: 602.
  • Gurr JR, Wang AS, Chen CH, Jan KY (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213: 66–73.
  • Hackenberg S, Friehs G, Froelich K, Ginzkey C, Koehler C, Scherzed A, Burghartz M, Hagen R, Kleinsasser N (2010). Intracellular distribution, geno- and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicol Lett 195: 9–14.
  • Hackenberg S, Zimmermann FZ, Scherzed A, Friehs G, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2011). Repetitive exposure to zinc oxide nanoparticles induces DNA damage in human nasal mucosa mini organ cultures. Environ Mol Mutagen 52: 582–589.
  • Henderson L, Wolfreys A, Fedyk J, Bourner C, Windebank S (1998). The ability of the comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis 13: 89–94.
  • Kang SJ, Kim BM, Lee YJ, Chung HW (2008). Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49: 399–405.
  • Kumari M, Mukherjee A, Chandrasekaran N (2009). Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407: 5243–5246.
  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011). Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190: 613–621.
  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011a). Cel- lular uptake and mutagenic potential of metal oxide nanopar- ticles in bacterial cells. Chemosphere 83: 1124–1132.
  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011b). En- gineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Bio Med 51: 1872–1881.
  • Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009). Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations-many questions, some answers. Mutat Res 681: 241–258.
  • Levan A (1938). The effect of colchicine on root mitosis in Allium. Hereditas 24: 471–486.
  • Liman R, Ciğerci İH, Akyıl D, Eren Y, Konuk M (2011). Determination of genotoxicity of Fenaminosulf by Allium and comet tests. Pestic Biochem Phys 99: 61–64.
  • Linnainmaa K, Kiveipensa P, Vainio H (1997). Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells. Toxicol In Vitro 11: 329–335.
  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40: 4346– 4352.
  • Lux Report (2008). Nanomaterials state of the market: stealth success, broad impact. Available from the website: http:// portal.luxresearchinc.com/research/document/3735.
  • Nakagawa Y, Wakuri S, Sakamoto K, Tanaka N (1997). The photogenotoxicity of titanium dioxide particles. Mutat Res 394: 125–32.
  • Nam SH, Kim SW, An YJ (2012). No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. J Appl Toxicol doi: 10.1002/jat.2830.
  • Ng KW, Khoo SP, Heng BC, Setyawati MI, Tan EC, Zhao X, Xiong S, Fang W, Leong DT, Loo JS (2011). The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 32: 8218–8225.
  • Osman IF, Baumgartner A, Cemeli E, Fletcher JN, Anderson D (2010). Genotoxicity and cytotoxicity of zinc oxide and tita- nium dioxide in HEp-2 cells. Nanomedicine-UK 5: 1193–1203.
  • Pfosser A, Amon A, Lelley T, Heberle-Bors E (1995). Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytom Part A 21: 387–393.
  • Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Persp 110: 797–800.
  • Reeves JF, Davies SJ, Dodd NJF, Jha AN (2008). Hydroxyl radicals (•OH) are associated with titanium dioxide (TiO2) nanoparticle- induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640: 113–22.
  • Royal Swedish Academy of Sciences (1973). Evaluation of genetic risks of environmental mutagens. Environ Health Persp 27: 3–6.
  • Seth CS, Misra V, Chauhan LKS, Singh RR (2008). Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and comet assay approach. Ecotox Environ Safe 71: 711–716.
  • Sharma V, Anderson D, Dhawan A (2011b). Zinc oxide nanopar- ticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 7: 98–99.
  • Sharma S, Nagpal A, Vig AP (2012). Genoprotective potential of Brassica juncea (L.) Czern. against mercury-induced genotox- icity in Allium cepa L. Turk J Biol 36: 622–629.
  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009). DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185: 211–218.
  • Sharma V, Singh SK, Anderson D, Tobin DJ, Dhawan A (2011a). Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes. J Nanosci Nanotechno 11: 3782–3788.
  • Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A (2011). ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25: 231–241.
  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30: 3891–3914.
  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184–191.
  • Strauss GH (1991). Non-random cell killing in cryopreservation: implications for performance of the battery of leukocytes tests (BLT). I. Toxic and immunotoxic effects. Mutat Res 252: 1–15.
  • Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D (2007). An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles. Mutat Res 634: 205–219.
  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiesti RH (2009). Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69: 8784–8789.
  • Türkez H, Geyikoğlu F (2007). An in vitro blood culture for evaluating the genotoxicity of titanium dioxide: the responses of antioxidant enzymes. Toxicol Ind Health 23: 19–23.
  • Vevers WF, Jha AN (2008). Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17: 410–420.
  • Wang JJ, Sanderson BJ, Wang H (2007). Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628: 99–106.
  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29: 69–78.
  • Yeber MC, Rodriguez J, Freer J, Durán N, Mansilla HD (2000). Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 41: 1193–1197.
  • Yıldız M, Ciğerci IH, Konuk M, Fidan AF, Terzi H (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere 75: 934–938.
APA Demir E, AKKAYA N, kaya b (2014). Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. , 31 - 39.
Chicago Demir Esref,AKKAYA Nuray,kaya bülent Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. (2014): 31 - 39.
MLA Demir Esref,AKKAYA Nuray,kaya bülent Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. , 2014, ss.31 - 39.
AMA Demir E,AKKAYA N,kaya b Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. . 2014; 31 - 39.
Vancouver Demir E,AKKAYA N,kaya b Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. . 2014; 31 - 39.
IEEE Demir E,AKKAYA N,kaya b "Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay." , ss.31 - 39, 2014.
ISNAD Demir, Esref vd. "Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay". (2014), 31-39.
APA Demir E, AKKAYA N, kaya b (2014). Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology, 38(1), 31 - 39.
Chicago Demir Esref,AKKAYA Nuray,kaya bülent Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology 38, no.1 (2014): 31 - 39.
MLA Demir Esref,AKKAYA Nuray,kaya bülent Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology, vol.38, no.1, 2014, ss.31 - 39.
AMA Demir E,AKKAYA N,kaya b Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology. 2014; 38(1): 31 - 39.
Vancouver Demir E,AKKAYA N,kaya b Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology. 2014; 38(1): 31 - 39.
IEEE Demir E,AKKAYA N,kaya b "Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay." Turkish Journal of Biology, 38, ss.31 - 39, 2014.
ISNAD Demir, Esref vd. "Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay". Turkish Journal of Biology 38/1 (2014), 31-39.