Yıl: 2014 Cilt: 14 Sayı: 1 Sayfa Aralığı: 297 - 322 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri

Öz:
Bu çalışmanın amacı, Fen, Teknoloji, Mühendislik ve Matematik (FeTeMM) içerikli okul sonrası etkinliklerin özelliklerini incelemek, öğrencilerin bu etkinlikler ile olan deneyimlerini ve kazanımlarını ve etkinliklerin öğrenciler üzerindeki etkilerini ortaya çıkarmaktır. Bu amaç kapsamında, betimleyici, nitel bir durum çalışması araştırma deseni olarak kullanılmıştır. Okul sonrası program etkinliklerine Amerika Birleşik Devletlerinin Güney Doğusunda bulunan sözleşmeli bir okuldan öğrenciler katılmıştır. Çalışma verileri üç farklı kaynaktan elde edilmiştir: (1) etkinliklere rehberlik sırasında araştırmacı tarafından yapılan gözlemler, (2) rehberlik ve öğrencilerle gerçekleştirilen toplantılar sonrasında alınan saha notları ve (3) katılımcı öğrencilerle yapılan bire bir ve yarı yapılandırılmış görüşmeler. Verilerin analizi sonucunda okul sonrası etkinlikleri tanımlanmış ve dört ana tema ortaya çıkmıştır: (a) işbirliğine dayalı öğrenme gruplarının önemi; (b) okul sonrası program etkinliklerinin popülerliği, (c) FeTeMM ile ilgili alanlara gösterilen ilgi ve (d) okul sonrası etkinliklerin 21. yüzyıl becerilerine katkısı. Çalışmanın bulguları, FeTeMM ile ilgili okul sonrası etkinliklerin, bağımsız ve işbirliğine dayalı bilimsel araştırmalara yönelik ve 21. yüzyıl becerilerinin geliştirilmesine katkı yapabilecek potansiyelde olduğunu göstermiştir. Ayrıca, FeTeMM odaklı okul sonrası etkinliklerin öğrencilere öğrenmelerinde nasıl destek olduğu değerlendirilmiştir
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Eğitim, Özel

STEM related after-school program activities and associated outcomes on student learning

Öz:
This study explores the characteristics of after-school program activities at a charter school in the Southeast US highlighting students experiences with and gains from these after-school program activities. A qualitative case study design was employed to understand students views and opinions regarding the activities and their learning trajectories. Study data were collected through formal and informal observations, one-on-one semi-structured interviews, and field notes. The study s findings indicated that such activities emphasize open-ended and collaborative scientific investigations in Science, Technology, Engineering, and Mathematics (STEM) fields and provided an arena for students to demonstrate various uses of 21st century skills. We have described and explained: (a) the importance of collaborative learning groups, (b) the popularity of after-school program activities, (c) interest in STEM fields, and (d) activities contribution to developing 21st century skills. These findings show that STEM related activities have the potential to promote collaborative learning and inquiry as well as to contribute to the development of 21st century skills. These findings have also been discussed in light of how STEM related after-school program activities support students learning.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Eğitim, Özel
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Bibliyografik
  • Abernathy, T. V., & Vineyard, R. N. (2001). Academic competitions in science what are the rewards for students? The Clearing House, 74 (5), 269-276.
  • Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through college . Washington, DC: U.S. Department of Education. Retrieved from www. ed.gov/rschstat/research/pubs/toolboxrevisit/index.html
  • Apedoe, X. S., Reynolds, B., Ellefson, M. R., & Schunn, C. D. (2008). Bringing engineering design into high school science classrooms: The heating/cooling unit. Journal of Science Education and Technology, 17 (5), 454-465. doi:10.1007/s10956-008-9114-6
  • Association for Career and Technical Education, National Association of State Directors of Career Technical Education Consortium and Partnership for 21st Century Skills. (2010). Up to the challenge: The role of career and technical education and 21st century skills in college and career readin ess. Retrieved from http://www.p21.org/ storage/documents/CTE_Oct2010.pdf
  • Barnes, D. J. (2002). Teaching introductory Java through Lego Mindstorms models. In Proceedings of the 33rd SIGCSE technical symposium on computer science education (pp. 147-151). New York: ACM.
  • Bell, P., Lewenstein, B., Shouse, A. W., & Feder, M. A. (2009). Learning science in informal environments: People, places, and pursuits . Washington, DC: The National Academies Press.
  • Bernard, W. (2005). Authentic research projects: Students’ perspectives on the process, ownership, and the benefits of doing research (Unpublished doctoral dissertation, Georgia
  • State University, Georgia). Buxton, C. A. (2001). Modeling science teaching on science practice? Painting a more accurate picture through an ethnographic lab study. Journal of Research in Science Teaching, 38 , 387-407.
  • Bybee, R. W. (2010a). The teaching of science: 21 st century perspectives . Arlington, Virginia: NSTA Press.
  • Bybee, R. W. (2010b). What is STEM education. Science, 329 , 996. doi: 10.1126/science.1194998
  • Bucknavage, L. B., & Worrell, F. C. (2005). A study of academically talented students’ in extracurricular activities. The Journal of Secondary Gifted Education, 6 (2/3), 74-86.
  • Bunderson, E. D., & Anderson, T. (1996). Pre-service elementary teachers’ attitudes toward their past experiences with science fairs. School Science & Mathematics, 96 (7), 371-378.
  • Cicek, V. (2012). After school student club practices in U.S. kindergarten thru 12th grade educational institutions. Journal of Educational and Instructional Studies in the World, 2 (3), 235-244.
  • Cleaves, A. (2005). The formation of science choices in secondary school. International Journal of Science Education, 27 (4), 471-486.
  • Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches (2nd ed.). Thousand Oaks, CA: Sage.
  • Cunningham, C. M, Knight, M. T., Carlsen, W. S, & Kelly, G. (2007). Integrating engineering in middle and high school classrooms. International Journal of Engineering Education, 23 (1), 3-8.
  • Czerniak, C. M., & Lumpe, A. T. (1996). Predictors of science fair participation using the theory of planned behavior. School Science & Mathematics, 97 (7), 335-362.
  • Dabney, K., Almarode, J., Tai, R. H., Sadler, P. M., Sonnert, G., Miller, J., & Hazari, Z. (2012). Out of school time science activities and their association with career interest in STEM. International Journal of Science Education, Part-B , 2 (1), 63-79.
  • Fisanick, L. M. (2010). A descriptive study of the middle school science teacher behavior for required student participation in science fair competitions (Published Doctoral Dissertation, Indiana University of Pennsylvania, Pennsylvania).
  • Fortus, D., Krajcik, J., Dershimer, R. C., Marx, R. W., & Mamlok-Naaman, R. (2005). Design-based science and real-world problem solving. International Journal of Science Education, 27 (7), 855-879.
  • Grote, M. (1995). Science teacher educators’ opinions about science projects and science fairs. Journal of Science Teacher Education, 6 (1), 48-52.
  • International Technology Education Association. (1999). Technology for All Americans . Reston, VA. ITEA.
  • Jerald, C. D. (2009, July). Defining a 21 st century education. Retrieved from http://www.centerforpubliceducation.org/ Learn-About/21st-Century/Defining-a-21st-Century- Education-Full-Report-PDF.pdf.
  • Kauffmann, P., Hall, C., Batts, D., Bosse, M., & Moses, L. (2009). Factors influencing high-school students’ career considerations in stem fields. In Proceedings of the 2009 ASEE Annual Conference and Exposition (pp. 3988-3998). New York: Curran Associates, Inc.
  • Lacey, T. A., & Wright, B. (2009). Occupational employment projections to 2018. Monthly Labor Review , November , 82-109.
  • Lantz, H. B. (2009). What should be the function of a K-12 STEM education? SEEN, 11 (3), 29-30.
  • Levy, F., & Murnane, R. (2004). The new division of labor: How computers are creating the next job market . Princeton, NJ: Princeton University Press.
  • Lindahl, B. (2007, April). A longitudinal study of students’ attitudes towards science and choice of career . Paper presented at annual meeting of the National Association for Research in Science Teaching, New Orleans, LA.
  • Maden, S. (2012). Temel dil becerilerinin eğitimi açısından ders dışı (informal) etkinliklere yönelik öğretmen ve öğrenci tercihleri. Millî Eğitim, 196 , 36-55.
  • Mahoney, J. L., Cairns, B. D., & Farmer, T. W. (2003). Promoting interpersonal competence and educational success through extracurricular activity participation. Journal of Educational Psychology, 95 (2), 409-418.
  • Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the fridge: Sources of early interest in science. International Journal of Science Education, 32 (5), 669-685.
  • Massachusetts Department of Education. (2006). Massachusetts science and technology/engineering curriculum framework . Retrieved from http://www.doe. mass.edu/frameworks/scitech/1006.pdf
  • McGee-Brown, M., Martin, C., Monsaas, J., & Stombler, M. (2003, March). What scientists do: Science Olympiad enhancing science inquiry through student collaboration, problem solving, and creativity. Paper presented at the annual National Science Teachers Association meeting, Philadelphia, PA.
  • Mehalik, M. M, Doppelt, Y., & Schunn, C. D. (2008). Middle-school science through design-based learning versus scripted inquiry: better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97 (1), 1-15.
  • Munro, M., & Elsom, D. (2000). Choosing science at 16: The influences of science teachers and careers advisers on pupils’ decisions about science subjects and science and technology careers . Cambridge: CRAC. http://www.crac.org.uk/crac_ new/pdfs/choosing_Science.pdf
  • National Academy of Engineering & National Research Council. (2009). Engineering in K–12 education: Understanding the status and improving the prospects .Washington, DC: NAP.
  • National Research Council. (2009). Learning science in informal environments: People, places, and pursuits .Retrieved from http://www.nap.edu/catalog.php?record_ id=12190
  • National Research Council. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics . Washington, DC: NAP.
  • Nueman, W. L. (2000). Social research methods: Qualitative and quantitative approaches (4th ed.). U.S.A.: Allyn & Bacon.
  • Obama, B. (2009, November 23). Remarks by the president on the “education to innovate” campaign . Retrieved from http://www.whitehouse.gov/the-press-office/president- obama-launches-educate-innovate-campaign-excellence- science-technology-en
  • Partnership for 21st Century Skills. (2011). 21st century skills, education and competitiveness: A resource and policy guide . Retrieved from: www.21stcenturyskills.org.
  • Peterson, N., Mumford, M., Borman, W., Jeanneret, P., & Fleishman, E. (1999). An occupational information system for the 21st century: The development of O*NET. Washington, DC: APA.
  • Sahin, A. (2013). STEM clubs and science fair competitions: Effects on post-secondary matriculation. Journal of STEM Education: Innovations and Research, 14 (1), 5-11.
  • Silva, E. (2008). Online discussion of measuring skills for the 21st century. Retrieved from http://www.educationsector. org/discussions/discussions_show.htm?discussion_ id=716323.
  • Schmidt, W. H. (2011, May). STEM reform: Which way to go? Paper presented at the National Research Council Workshop on Successful STEM Education in K-12 Schools. Retrieved fromhttp://www7.nationalacademies.org/ bose/ STEM_Schools_Workshop_Paper_Schmidt.pdf.
  • Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching , 45, 373-394.
  • Şimşek, C. L. (2011). Fen öğretiminde okul dışı öğrenme ortamları . Pegem Akademi, Ankara.
  • Texas Education Agency. (2006). Texas open-enrollment charter schools 2004-2005 evaluation: Executive summary. Retrieved from http://ritter.tea.state.tx.us/charter/reports/ y8execsum.pdf
  • Tindall, T., & Hamil, B. (2004). Gender disparity in science education: The causes consequences and solutions. Education, 125 (2), 282-295
  • Tyson, W., Lee, R., Borman, K. M., & Hanson, M. A. (2007). Science, technology, engineering, and mathematics (STEM) pathways: High school science and math coursework and postsecondary degree attainment, Journal of Education for Students Placed at Risk , 12 (3), 243-270.
  • Wagner, T. (2008). Rigor redefined. Educational Leadership, 66 (2), 20-24.
  • Weinberg, J. B., White, W. W., Karacal, C., Engel, G., & Hu, A. P. (2005). Multi-disciplinary teamwork in a robotics course. ACMSIGCSE Bulletin, 37 , 446-450.
  • Wendell, K., Connolly, K., Wright, C., Jarvin, L., Rogers, C., Barnett, M., & Marulcu, I. (2010, October). Incorporating engineering design into elementary school science curricula . Paper presented at the Annual Meeting of American Society for Engineering Education. Singapore.
  • Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press.
  • Windschitl, M. (2009). Cultivating 21 st century skills in science learners: How systems of teacher preparation and professional development will have to evolve . Paper commissioned by National Academy of Science’s Committee on The Development of 21 st Century Skills .Washington, DC.
  • Wirt, J. L. (2011). An analysis of science Olympiad participant’s perceptions regarding their experience with the science and engineering academic competition (Doctoral dissertation). Retrieved from http://scholarship.shu.edu/ dissertations/26/
  • Zoldosova, K., & Prokop, P. (2006). Education in the field influences children’s ideas and interest toward science. Journal of Science Education and Technology, 15 (3), 304-313.
APA ŞAHİN A, AYAR C, ADIGÜZEL T (2014). Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. , 297 - 322.
Chicago ŞAHİN Alpaslan,AYAR C. Mehmet,ADIGÜZEL TUFAN Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. (2014): 297 - 322.
MLA ŞAHİN Alpaslan,AYAR C. Mehmet,ADIGÜZEL TUFAN Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. , 2014, ss.297 - 322.
AMA ŞAHİN A,AYAR C,ADIGÜZEL T Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. . 2014; 297 - 322.
Vancouver ŞAHİN A,AYAR C,ADIGÜZEL T Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. . 2014; 297 - 322.
IEEE ŞAHİN A,AYAR C,ADIGÜZEL T "Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri." , ss.297 - 322, 2014.
ISNAD ŞAHİN, Alpaslan vd. "Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri". (2014), 297-322.
APA ŞAHİN A, AYAR C, ADIGÜZEL T (2014). Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri, 14(1), 297 - 322.
Chicago ŞAHİN Alpaslan,AYAR C. Mehmet,ADIGÜZEL TUFAN Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri 14, no.1 (2014): 297 - 322.
MLA ŞAHİN Alpaslan,AYAR C. Mehmet,ADIGÜZEL TUFAN Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri, vol.14, no.1, 2014, ss.297 - 322.
AMA ŞAHİN A,AYAR C,ADIGÜZEL T Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri. 2014; 14(1): 297 - 322.
Vancouver ŞAHİN A,AYAR C,ADIGÜZEL T Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri. 2014; 14(1): 297 - 322.
IEEE ŞAHİN A,AYAR C,ADIGÜZEL T "Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri." Kuram ve Uygulamada Eğitim Bilimleri, 14, ss.297 - 322, 2014.
ISNAD ŞAHİN, Alpaslan vd. "Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri". Kuram ve Uygulamada Eğitim Bilimleri 14/1 (2014), 297-322.