Yıl: 2014 Cilt: 38 Sayı: 6 Sayfa Aralığı: 740 - 747 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Invadopodia: proteolytic feet of cancer cells

Öz:
The leading cause of death in cancer patients is metastasis. Invasion is an integral part of metastasis and is carried out by proteolytic structures called invadopodia at the cellular level. In this introductory review, we start by evaluating the definition of invadopodia. While presenting the upstream signaling events involved, we integrate current models on invadopodia. In addition, we discuss the significance of invadopodia in 2D and 3D and in vivo. We finally point out technical challenges and conclude with open questions in the field.
Anahtar Kelime:

Konular: Biyoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Alam N, Goel HL, Zarif MJ, Butterfield JE, Perkins HM, Sansoucy BG, Sawyer TK, Languino LR (2007). The integrin–growth factor receptor duet. J Cell Physiol 213: 649–653.
  • Artym VV, Zhang Y, Seillier-Moiseiwitsch FO, Yamada KM, Mueller SC (2006). Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: Defining the stages of invadopodia formation and function. Cancer Res 66: 3034–3043.
  • Ayala I, Baldassarre M, Caldieri G, Buccione R (2006). Invadopodia: A guided tour. Eur J Cell Biol 85: 159–164.
  • Ayala I, Giacchetti G, Caldieri G, Attanasio F, Mariggio S, Tete S, Polishchuk R, Castronovo V, Buccione R (2009). Faciogenital dysplasia protein Fgd1 regulates invadopodia biogenesis and extracellular matrix degradation and is up-regulated in prostate and breast cancer. Cancer Res 69: 747–752.
  • Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R (2003). Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 14: 1074–1084.
  • Beaty BT, Sharma VP, Bravo-Cordero JJ, Simpson MA, Eddy RJ, Koleske AJ, Condeelis J (2013). β1 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Mol Biol Cell 24: 1661–1675.
  • Blouw B, Seals DF, Pass I, Diaz B, Courtneidge SA (2008). A role for the podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo. Eur J Cell Biol 87: 555–567.
  • Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC (1999). An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18: 4440–4449.
  • Bowden ET, Onikoyi E, Slack R, Myoui A, Yoneda T, Yamada KM, Mueller SC (2006). Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp Cell Biol 312: 1240–1253.
  • Bravo-Cordero JJ, Hodgson L, Condeelis J (2012). Directed cell invasion and migration during metastasis. Curr Opin Cell Biol 24: 277–283.
  • Bravo-Cordero JJ, Oser M, Chen XM, Eddy R, Hodgson L, Condeelis J (2011). A Novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 21: 635–644.
  • Buccione R, Caldieri G, Ayala I (2009). Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metast Rev 28: 137–149.
  • Buday L, Downward J (2007). Roles of cortactin in tumor pathogenesis. Bba-Rev Cancer 1775: 263–273.
  • Caldieri G, Ayala I, Attanasio F, Buccione R (2009). Cell and molecular biology of invadopodia. Int Rev Cell Mol Biol 275: 1–34.
  • Caldieri G, Buccione R (2010). Aiming for invadopodia: organizing polarized delivery at sites of invasion. Trends Cell Biol 20: 64–70.
  • Carpenter G, Cohen S (1990). Epidermal growth-factor. J Biol Chem 265: 7709–7712.
  • Chen WT (1996). Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Enzyme Protein 49: 59–71.
  • Chen WT, Lee CC, Goldstein L, Bernier S, Liu CHL, Lin CY, Yeh YY, Monsky WL, Kelly T, Dai MZ et al. (1994). Membrane proteases as potential diagnostic and therapeutic targets for breast malignancy. Breast Cancer Res Tr 31: 217–226.
  • Clark ES, Brown B, Whigham AS, Kochaishvili A, Yarbrough WG, Weaver AM (2009). Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene in the 11q13 amplicon. Oncogene 28: 431–444.
  • Cohen S (1962). Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new- born animal. J Biol Chem 237: 1555–1562.
  • DesMarais V, Yamaguchi H, Oser M, Soon L, Mouneimne G, Sarmiento C, Eddy R, Condeelis J (2009). N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells. Cell Motil Cytoskel 66: 303–316.
  • Destaing O, Block MR, Planus E, Albiges-Rizo C (2011). Invadosome regulation by adhesion signaling. Curr Opin Cell Biol 23: 597–606.
  • Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ (2013). Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Oncogene 32: 2622–2630.
  • Gilcrease MZ (2007). Integrin signaling in epithelial cells. Cancer Lett 247: 1–25.
  • Gimona M, Buccione R (2006). Adhesions that mediate invasion. Int J Biochem Cell B 38: 1875–1892.
  • Gimona M, Buccione R, Courtneidge SA, Linder S (2008). Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20: 235–241.
  • Gligorijevic B, Wyckoff J, Yamaguchi H, Wang YR, Roussos ET, Condeelis J (2012). N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 125: 724–734.
  • Harris RC, Chung E, Coffey RJ (2003). EGF receptor ligands. Exp Cell Biol 284: 2–13.
  • Hoshino D, Branch KM, Weaver AM (2013). Signaling inputs to invadopodia and podosomes. J Cell Sci 126: 2979–2989.
  • Kessenbrock K, Plaks V, Werb Z (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141: 52–67.
  • Labernadie A, Thibault C, Vieu C, Maridonneau-Parini I, Charriere GM (2010). Dynamics of podosome stiffness revealed by atomic force microscopy. P Natl Acad Sci USA 107: 21016–21021.
  • Leight JL, Alge DL, Maier AJ, Anseth KS (2013). Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Biomaterials 34: 7344–7352.
  • Lewis S, Locker A, Todd JH, Bell JA, Nicholson R, Elston CW, Blamey RW, Ellis IO (1990). Expression of epidermal growth-factor receptor in breast carcinoma. J Clin Pathol 43: 385–389.
  • Li A, Dawson JC, Forero-Vargas M, Spence HJ, Yu XZ, Konig I, Anderson K, Machesky LM (2010a). The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr Biol 20: 339–345.
  • Li RH, Li G, Deng L, Liu QL, Dai J, Shen J, Zhang J (2010b). IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep 23: 1553–1559.
  • Linder S (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17: 107–117.
  • Linder S (2009). Invadosomes at a glance. J Cell Sci 122: 3009–3013. Linder S, Aepfelbacher M (2003). Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13: 376–385.
  • Linder S, Wiesner C, Himmel M (2011). Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 27: 185–211.
  • Lizarraga F, Poincloux R, Romao M, Montagnac G, Le Dez G, Bonne I, Rigaill G, Raposo G, Chavrier P (2009). Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res 69: 2792–2800.
  • MacGrath SM, Koleske AJ (2012). Cortactin in cell migration and cancer at a glance. J Cell Sci 125: 1621–1626.
  • Mader CC, Oser M, Magalhaes MAO, Bravo-Cordero JJ, Condeelis J, Koleske AJ, Gil-Henn H (2011). An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 71: 1730–1741.
  • Magalhaes MAO, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M, Chen XM, Koleske AJ, Condeelis J (2011). Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J Cell Biol 195: 903–920.
  • Massague J, Pandiella A (1993). Membrane-anchored growth factors. Annu Rev Biochem 62: 515–541.
  • McNiven MA (2013). Breaking away: matrix remodeling from the leading edge. Trends Cell Biol 23: 16–21.
  • Memon AA, Sorensen BS, Nexo E (2006). The epidermal growth factor family has a dual role in deciding the fate of cancer cells. Scand J Clin Lab Inv 66: 623–630.
  • Moro L, Dolce L, Cabodi S, Bergatto E, Erba EB, Smeriglio M, Turco E, Retta SF, Giuffrida MG, Venturino M et al. (2002). Integrin- induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 277: 9405–9414.
  • Mueller SC, Ghersi G, Akiyama SK, Sang QXA, Howard L, Pineiro- Sanchez M, Nakahara H, Yeh Y, Chen WT (1999). A novel protease-docking function of integrin at invadopodia. J Biol Chem 274: 24947–24952.
  • Murphy DA, Courtneidge SA (2011). The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Bio 12: 413–426.
  • Oser M, Dovas A, Cox D, Condeelis J (2011). Nck1 and Grb2 localization patterns can distinguish invadopodia from podosomes. Eur J Cell Biol 90: 181–188.
  • Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ, Koleske AJ, Condeelis J (2010). Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J Cell Sci 123: 3662–3673.
  • Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen XM, DesMarais V, van Rheenen J, Koleske AJ, Condeelis J (2009). Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol 186: 571–587.
  • Packard BZ, Artym VV, Komoriya A, Yamada KM (2009). Direct visualization of protease activity on cells migrating in three- dimensions. Matrix Biol 28: 3–10.
  • Ruoslahti E, Yamaguchi Y, Hildebrand A, Border WA (1992). Extracellular-matrix growth-factor interactions. Cold Spring Harb Sym 57: 309–315.
  • Sabeh F, Shimizu-Hirota R, Weiss SJ (2009). Protease-dependent versus -independent cancer cell invasion programs: three- dimensional amoeboid movement revisited. J Cell Biol 185: 11–19.
  • Sainsbury JRC, Malcolm AJ, Appleton DR, Farndon JR, Harris AL (1985). Presence of epidermal growth-factor receptor as an indicator of poor prognosis in patients with breast cancer. J Clin Pathol 38: 1225–1228.
  • Schoumacher M, Goldman RD, Louvard D, Vignjevic DM (2010). Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol 189: 541–556.
  • Seals DF, Azucena EF, Pass I, Tesfay L, Gordon R, Woodrow M, Resau JH, Courtneidge SA (2005). The adaptor protein Tks5/ Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7: 155–165.
  • Sharma VP, Eddy R, Entenberg D, Kai M, Gertler FB, Condeelis J (2013). Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Curr Biol 23: 2079–2089.
  • Singh AB, Harris RC (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17: 1183–1193.
  • Stylli SS, Kaye AH, Lock P (2008). Invadopodia: At the cutting edge of tumour invasion. J Clin Neurosci 15: 725–737.
  • Stylli SS, Stacey TTI, Kaye AH, Lock P (2012). Prognostic significance of Tks5 expression in gliomas. J Clin Neurosci 19: 436–442.
  • Taipale J, Keski-Oja J (1997). Growth factors in the extracellular matrix. Faseb J 11: 51-59.
  • Thery M, Racine V, Piel M, Pepin A, Dimitrov A, Chen Y, Sibarita JB, Bornens M (2006). Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. P Natl Acad Sci USA 103: 19771–19776.
  • Wang WG, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64: 8585–8594.
  • Wang WG, Wyckoff JB, Goswami S, Wang YR, Sidani M, Segall JE, Condeelis JS (2007). Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67: 3505–3511.
  • Yamada KM, Even-Ram S (2002). Integrin regulation of growth factor receptors. Nat Cell Biol 4: E75–E76.
  • Yamaguchi H (2012). Pathological roles of invadopodia in cancer invasion and metastasis. Eur J Cell Biol 91: 902–907.
  • Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168: 441–452.
  • Yilmaz M, Christofori G (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer Metast Rev 28: 15–33.
  • Yu XZ, Machesky LM (2012). Cells assemble invadopodia-like structures and invade into Matrigel in a matrix metalloprotease dependent manner in the circular invasion assay. Plos One 7.
  • Yu XZ, Zech T, McDonald L, Gonzalez EG, Li A, Macpherson I, Schwarz JP, Spence H, Futo K, Timpson P et al. (2012). N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol 199: 527–544.
APA BATI G, Pesen Okvur D (2014). Invadopodia: proteolytic feet of cancer cells. , 740 - 747.
Chicago BATI Gizem,Pesen Okvur Devrim Invadopodia: proteolytic feet of cancer cells. (2014): 740 - 747.
MLA BATI Gizem,Pesen Okvur Devrim Invadopodia: proteolytic feet of cancer cells. , 2014, ss.740 - 747.
AMA BATI G,Pesen Okvur D Invadopodia: proteolytic feet of cancer cells. . 2014; 740 - 747.
Vancouver BATI G,Pesen Okvur D Invadopodia: proteolytic feet of cancer cells. . 2014; 740 - 747.
IEEE BATI G,Pesen Okvur D "Invadopodia: proteolytic feet of cancer cells." , ss.740 - 747, 2014.
ISNAD BATI, Gizem - Pesen Okvur, Devrim. "Invadopodia: proteolytic feet of cancer cells". (2014), 740-747.
APA BATI G, Pesen Okvur D (2014). Invadopodia: proteolytic feet of cancer cells. Turkish Journal of Biology, 38(6), 740 - 747.
Chicago BATI Gizem,Pesen Okvur Devrim Invadopodia: proteolytic feet of cancer cells. Turkish Journal of Biology 38, no.6 (2014): 740 - 747.
MLA BATI Gizem,Pesen Okvur Devrim Invadopodia: proteolytic feet of cancer cells. Turkish Journal of Biology, vol.38, no.6, 2014, ss.740 - 747.
AMA BATI G,Pesen Okvur D Invadopodia: proteolytic feet of cancer cells. Turkish Journal of Biology. 2014; 38(6): 740 - 747.
Vancouver BATI G,Pesen Okvur D Invadopodia: proteolytic feet of cancer cells. Turkish Journal of Biology. 2014; 38(6): 740 - 747.
IEEE BATI G,Pesen Okvur D "Invadopodia: proteolytic feet of cancer cells." Turkish Journal of Biology, 38, ss.740 - 747, 2014.
ISNAD BATI, Gizem - Pesen Okvur, Devrim. "Invadopodia: proteolytic feet of cancer cells". Turkish Journal of Biology 38/6 (2014), 740-747.