Yıl: 2015 Cilt: 35 Sayı: 2 Sayfa Aralığı: 1 - 18 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS

Öz:
Bu çalışmada, Reynolds sayısının 100 ile 10000 arasında değiştiği, iki boyutlu ve zamana bağlı kapak güdümlü kavite akışlarının Hesaplamalı Akışkanlar Dinamiği (HAD) çalışmaları özgün olarak geliştirilen HAD kodlarının uygulanmasıyla incelenmiştir. Akışın zamana bağımlı davranışı sinüssel hız profili uygulanarak tetiklenmiştir. Akış alanında gözlemlenen yapılar düşük boyutlu modelleme tekniği olan Dikgen Ayrıştırma Yöntemi (DAY) kullanılarak incelenmiş olup, bu yapılar frekans derecelerine (akış alanının bütününü ifade etmeye yönelik olan katkılarına, enerji içeriklerine) göre ayrıştırılmıştır. DAY sonuçlarına göre, akım fonksiyonu veri grubu olarak kullanıldığında, toplam enerji içeriğinin %99a yakın kısmı sadece en yüksek enerji içeriğine sahip ilk dört DAY kipi kullanılarak ifade edilebilmektedir. Buna karşılık, x-yönündeki hız veri grubu kullanıldığında en yüksek enerji içeriğine sahip ilk dört kipin kullanılmasıyla toplam enerji içeriğinin % 9095lik bir kısmı ifade edilebilmektedir. Ayrıca, çalışmada değişik Reynolds sayılarının uygulandığı durumlar için Yapay Sinir Ağı (YSA) uygulaması yapılarak kip genlikleri de tahmin edilmiştir. HAD kullanılarak belirli akış durumları için yeterince bilgi toplandıktan sonra, YSA ile bütünleştirilen yaklaşım sayesinde farklı akış koşulları için gerçek zamanlı kontrol uygulamaları için pratik olmayan HAD analizlerine gerek duyulmadan akış alanında neler olduğuna ilişkin bilgileri tahmin etmek mümkün olmaktadır.
Anahtar Kelime:

Konular: Termodinamik

KAPAK GÜDÜMLÜ KAVİTE AKIŞLARINDA ZAMANA BAĞLI DAVRANIŞIN YAPAY SİNİR AĞLARI TABANLI TAHMİNİ

Öz:
In this study, computational fluid dynamics (CFD) analyses of the two-dimensional, time-dependent liddriven cavity flows, for Reynolds numbers ranging from 100 to 10000, are performed by using an in-house developed CFD code. The unsteady behavior of the flow is triggered using a sinusoidal lid velocity profile. The flow structure is further investigated with the application of a reduced order modeling technique, Proper Orthogonal Decomposition (POD), and the structures present in the flow, are separated according to their frequency (energy) content. POD results show that when the stream function formation is used as a data ensemble, about 99% of the total energy content can be modeled by considering only the most energetic first four POD modes; whereas, this value remains at a range between 9095% for the x-direction velocity data ensemble. What is more, an Artificial Neural Network (ANN) based approach is developed to predict mode amplitudes for flows with different Reynolds numbers. Once enough information is obtained with the help of CFD of few flow cases, the ANN integrated approach presented herein helps to predict what is happening in the flow for different flow cases without requiring further CFD simulations, which are not practical in real-time flow control applications.
Anahtar Kelime:

Konular: Termodinamik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahadian S., Mizuseki H. and Kawazoe Y., 2009, An Efficient Tool for Modeling and Predicting Fluid Flow in Nanochannels, Journal of Chemical Physics, 131.
  • Ahlman D., Söderlund F., Jackson J., Kurdila A. and Shyy W., 2002, Proper Orthogonal Decomposition for Time-Dependent Lid-Driven Cavity Flows, Numerical Heat Transfer, Part B: Fundamentals, 42, 285-306.
  • Apacoglu B., Paksoy A. and Aradag S., 2011, CFD Analysis and Reduced Order Modeling of Uncontrolled and Controlled Laminar Flow over a Circular Cylinder, Engineering Applications of Computational Fluid Mechanics, 5, 67-82.
  • Aubry N., Holmes P., Lumley J. L. and Stone E., 1988, The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer, Journal of Fluid Mechanics, 192, 115-173.
  • Bishop C. M., 1994, Neural Networks and Their Applications, Review Article, Review of Scientific Instruments, 65, 1803-1832.
  • Cao Y., Zhu J., Luo Z. and Navon I., 2006, Reduced Order Modeling of the Upper Tropical Pacific Ocean Model Using Proper Orthogonal Decomposition, Computer and Mathematics with Applications, 52, 1373-1386.
  • Cazemier W., Verstappen R. W. C. P. and Veldman A. E. P., 1998, Proper Orthogonal Decomposition and Low-Dimensional Models for Driven Cavity Flows, Physics of Fluids, 10 (7), 1685-1699.
  • Connell R. and Kulasiri D., 2005, Modeling Velocity Structures in Turbulent Floods Using Proper Orthogonal Decomposition, International Congress on Modeling and Simulation, Melbourne, Australia, 1237-1242.
  • Deane A. E., Kevrekidis I. G., Karniadakis G. E. and Orszag S. A., 1991, Low-Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders, Physics of Fluids, 3, 2337-2354.
  • Emang D., Shitan M., Ghani A. N. A. and Noor K. M., 2010, Forecasting with Univariate Time Series Models: A Case of Export Demand for Peninsular Malaysia’s Moulding and Chipboard, Journal of Sustainable Development, 3, 157-161.
  • Erturk E., Corke T. C. and Gokcol C., 2005, Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers, International Journal for Numerical Methods in Fluids, 45, 747-774.
  • Fitzpatrick K., Feng Y., Lind R., Kurdila A. J. and Mikolaitis D. W., 2005, Flow Control in a Driven Cavity Incorporating Excitation Phase Differential, Journal of Guidance, Control, and Dynamics, 28, 63-70.
  • Gracia M. M., 2010, Reduced Models to Calculate Stationary Solutions for the Lid-Driven Cavity Problem, M.S. Thesis, Polytechnic University of Catalonia, Barcelona, Spain. Haykin S., 1999, Neural Networks: A Comprehensive Foundation (Second Ed.), Prentice Hall, Upper Saddle River, NJ, USA.
  • Holmes P., Lumley J. L. and Berkooz G., 1996, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, UK.
  • Khataee A. R., Zarei M. and Pourhassan M., 2010, Bioremediation of Malachite Green from Contaminated Water by Three Microalgae: Neural Network Modeling, Clean – Soil, Air, Water, 38, 96-103.
  • Koblitz T. W., Bechmann A. and Sørensen N. N., 2010, The 2D Lid-Driven Cavity – Validation of CFD Code to Model Non-Neutral Atmospheric Boundary Layer Conditions, Proceedings 6th PhD Seminar on Wind Energy in Europe, Trondheim, Norway, 157-160.
  • Lall S., Marsden J. E. and Glavaski S., 2002, A Subspace Approach to Balanced Truncation for Model Reduction of Nonlinear Control Systems, International Journal of Robust and Nonlinear Control, 12, 519-535.
  • Lewis C. D., 1982, International and Business Forecasting Methods, London, Butterworths, UK.
  • Lieu T., Farhat C. and Lesoinne M., 2006, ReducedOrder Fluid/Structure Modeling of a Complete Aircraft Configuration, Computer Methods in Applied Mechanics and Engineering, 195, 5730-5742.
  • Lumley J. L., 1967, The Structure of Inhomogeneous Turbulent Flows, Atmospheric Turbulence and Radio Propagation, 166-178.
  • Ly H. and Tran H., 2001, Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition, Mathematical and Computer Modeling, 33, 223-236.
  • Matyka M., 2004, Solution to Two-Dimensional Incompressible Navier-Stokes Equations with SIMPLE, SIMPLER and Vorticity-Stream Function Approaches, Driven-Lid Cavity Problem: Solution and Visualization, University of Wroclaw in Poland, Computational Physics Section of Theoretical Physics.
  • Mehrotra K., Mohan C.M., Ranka S., 1996, Elements of Artificial Neural Networks (Complex Adaptive Systems), The MIT Press, Cambridge, MA, USA.
  • Newman A. J., 1996, Model Reduction via the Karhunen-Loeve Expansion Part 2: Some Elementary Examples, Institute for Systems Research, Technical Report No. 96-33.
  • Nørgaard M., Ravn O., Poulsen N. K. and Hansen L. K., 2003, Neural Networks for Modeling and Control of Dynamic Systems, Springer, UK.
  • O’Donnell B. J. and Helenbrook B. T., 2007, Proper Orthogonal Decomposition and Incompressible Flow: An Application to Particle Modeling, Computers and Fluids, 36, 1174-1186. Paksoy A., Apacoglu B., and Aradag S., 2011, Reduced Order Modeling of a Turbulent Two Dimensional Cylinder Wake with Filtered POD and Artificial Neural Networks, AIAA 49th Aerospace Sciences Meeting Including New Horizons Forum and Aerospace Exposition, Orlando, FL, USA.
  • Peng Y. F., Shiau Y. H. and Hwang R. R., 2003, Transition in a 2-D Lid-Driven Cavity Flow, Computers and Fluids, 32, 337-352.
  • Perumal D. A. and Dass A. K., 2010, Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities, CFD Letters, 2, 13-24.
  • Sanghi S. and Hasan N., 2011 Proper Orthogonal Decomposition and Its Applications, Asia-Pacific Journal of Chemical Engineering, 6, 120-128.
  • Samarasinghe S., 2006, Neural Networks for Applied Sciences and Engineering, From Fundamentals to Complex Pattern Recognition, Auerbach Publications Taylor and Francis Group.
  • Sen M., Bhaganagar K. and Juttijudata V., 2007, Application of Proper Orthogonal Decomposition (POD) to Investigate a Turbulent Boundary Layer in a Channel with Rough Walls, Journal of Turbulence, 8, doi: 10.1080/14685240701615960.
  • Siegel S., Cohen K., Seidel J., Aradag S. and McLaughlin T., 2008, Low Dimensional Model Development Using Double Proper Orthogonal Decomposition and System Identification, 4 th Flow Control Conference, Seattle, USA.
  • Tannehill J. C., Anderson D. A. and Pletcher R. H., 1997, Computational Fluid Mechanics and Heat Transfer (Second Ed.), Taylor & Francis, Philadelphia, PA, USA.
  • Zhang L., Akiyama M., Huang K., Sugiyama H. and Ninomiya N., 1996, Estimation of Flow Patterns by Applying Artificial Neural Networks, Information Intelligence and Systems, 1-4, 1358-1363.
  • Zhang Y., Henson M. A. and Kevrekidis Y. G., 2003, Nonlinear Model Reduction for Dynamic Analysis of Cell Population Models, Chemical Engineering Science, 58, 429-445.
APA PAKSOY A, ARADAG S (2015). ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. , 1 - 18.
Chicago PAKSOY Akin,ARADAG Selin ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. (2015): 1 - 18.
MLA PAKSOY Akin,ARADAG Selin ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. , 2015, ss.1 - 18.
AMA PAKSOY A,ARADAG S ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. . 2015; 1 - 18.
Vancouver PAKSOY A,ARADAG S ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. . 2015; 1 - 18.
IEEE PAKSOY A,ARADAG S "ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS." , ss.1 - 18, 2015.
ISNAD PAKSOY, Akin - ARADAG, Selin. "ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS". (2015), 1-18.
APA PAKSOY A, ARADAG S (2015). ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. Isı Bilimi ve Tekniği Dergisi, 35(2), 1 - 18.
Chicago PAKSOY Akin,ARADAG Selin ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. Isı Bilimi ve Tekniği Dergisi 35, no.2 (2015): 1 - 18.
MLA PAKSOY Akin,ARADAG Selin ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. Isı Bilimi ve Tekniği Dergisi, vol.35, no.2, 2015, ss.1 - 18.
AMA PAKSOY A,ARADAG S ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. Isı Bilimi ve Tekniği Dergisi. 2015; 35(2): 1 - 18.
Vancouver PAKSOY A,ARADAG S ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. Isı Bilimi ve Tekniği Dergisi. 2015; 35(2): 1 - 18.
IEEE PAKSOY A,ARADAG S "ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS." Isı Bilimi ve Tekniği Dergisi, 35, ss.1 - 18, 2015.
ISNAD PAKSOY, Akin - ARADAG, Selin. "ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS". Isı Bilimi ve Tekniği Dergisi 35/2 (2015), 1-18.