Yıl: 2014 Cilt: 25 Sayı: 3 Sayfa Aralığı: 142 - 158 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri

Öz:
Başlangıçta rehabilitasyon ve tedavi amaçlı olarak uygulanan elektromyostimülasyon (EMS)daha sonra popüler bir antrenman yöntemi olarakantrenörlerin, sporcuların ve spor bilimcilerin ilgisini çekmiştir. EMS, kas dokusu ya da motor noktalar üzerine uygulanan elektriksel akımlar olaraktanımlanabilir. Elektriksel uyarılı ve istemli kasılmalar sırasında kaslar farklı şekilde aktive olmaktadır. Yapılan çalışmalar EMS antrenmanlarının kashipertrofisi için gereken kas kuvvetini daha kısazamanda arttırdığını ve istatistiksel olarak anlamlıbir hipertrofi olmaksızın artan kuvvetin nöral gelişimin en önemli kanıtı olduğunu göstermektedir. EMSantrenmanlarının maksimal istemli kuvvette artışsağlaması spinal ve supraspinal merkezlerden aktifkaslara olan nöral sürüşte, spinal uyarılabilirlikte,aktive olan motor ünite miktarında ve senkronizasyonunda artış olasılığını da akla getirmektedir. Bununyanında ünilateral uygulanan EMS antrenmanlarınınkontralateral homolog kasta da kuvvet artışları sağlaması EMS antrenmanlarının supraspinal merkezlerive farklı kortikal bölgeleri etkilediğini göstermektedir. Bu kapsam dahilinde yapılan çalışmaların ışığındaderlemenin amacı EMS antrenmanlarına dayalı nöraladaptasyonlar ve EMS antrenmanlarının sedanter vesporcuların sportif performanlarında meydana getirdiği etkileri incelemektir.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Spor Bilimleri

The Effects of Electromyostimulation Training on Neural Adaptation and Sports Performance

Öz:
Electromyostimulation (EMS), being applied for rehabilitation and treatment, attrached to the trainers, athletes and sport scientiests as a popular training method. EMS can be defined as electrical currentsare applied to the muscle tissue or motor points. Themuscles are activated in different ways during voluntary and electrically evoked contractions. Paststudies showed that EMS training increases muscularstrength less time is required for muscle hypertrophyand also strength development without a statisticallysignificant hypertrophy is the most important evidence of neural adaptations. Therefore, EMS trainingbrings to mind the possibility of an increase in magnitude of neural output from spinal and supraspinalcenters to active muscles, spinal plasticity, amount ofactivated motor units and synchronisation. In addition, unilateral EMS training increases in contralateralhomologous muscle strength that shows EMS traininginfluences in supraspinal centers and different corticalregions. The purpose of this review was to investigateof neural adaptation related to EMS training and effects of EMS training for sedentary people and athletesin their sport performances.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Spor Bilimleri
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. (2002). Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. Journal of Applied Physiology, 92(6), 2309-2318.
  • 2. Amiridis IG, Arabatzi F, Violaris P, Stavropoulos E, Hatzitaki V. (2005). Static balance improvement in elderly after dorsiflexors electrostimulation training. European Journal of Applied Physiology, 94(4), 424-433.
  • 3. Babault N, Cometti G, Bernardin M, Pousson M, Chatard JC. (2007). Effects of electromyostimulation training on muscle strength and power of elite rugby players. The Journal of Strength and Conditioning Research, 21(2), 431-437.
  • 4. Babault N, Cometti C, Maffiluetti NA, Deley G. (2011). Does electrical stimulation enhance post-exercise recovery? European Journal of Applied Physiology, 111(10), 2501-2507.
  • 5. Banerjee P, Caulfield B, Crowe L, Clark A. (2005). Prolonged electrical muscle stimulation exercise improves strength and aerobic capacity in healthy sedentary adults. Journal of Applied Physiology, 99(6), 2307-2311.
  • 6. Bezerra P, Zhou S, Crowley Z, Brooks L, Hooper A. (2009). Effects of unilateral electromyostimulation superimposed on voluntary training on strength and cross sectional area. Muscle & Nerve, 40(3), 430-437.
  • 7. Bickel CS, Gregory CM, Dean JC. (2011). Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. European Journal of Applied Physiology, 111(10), 2399-2407.
  • 8. Billot M, Martin A, Paizis C, Cometti C, Babault N. (2010). Effects of an electrostimulation training program on strength, jumping, and kicking capacities in soccer players. The Journal of Strength and Conditioning Research, 24(5), 1407-1413.
  • 9. Binder-Macleod SA, Halden EE, Jungles KA. (1995). Effects of stimulation intensity on the physiological responses of human motor units. Med. Sci. Sports Exerc, 27(4), 556-565.
  • 10. Blickenstorfer A, Kleiser R, Keller T, Keisker B, Meyer M, Riener R., ve diğ. (2009). Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Human Brain Mapping, 30(3), 963-975.
  • 11. Brocherie F, Babault N, Cometti G, Maffiuletti N, Chatard JC. (2005). Electrostimulation training effects on the physical performance of ice hockey players. Medicine and Science in Sports and Exercise, 37(3), 455-460.
  • 12. Collins DF, Burke D, Gandevia SC. (2001). Large involuntary forces consistent with plateau-like behavior of human motoneurons. The Journal of Neuroscience, 21(11), 4059- 4065.
  • 13. Collins DF. (2007). Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exercise and Sport Sciences Reviews, 35(3), 102-109.
  • 14. Colson SS, Martin A, Hoecke JV. (2009). Effects of electromyostimulation versus voluntary isometric training on elbow flexor muscle strength. Journal of Electromyography and Kinesiology, 19(5), 311-319.
  • 15. Deley G, Cometti C, Fatnassi A, Paizis C, Babault N. (2011). Effects of combined electromyostimulation and gymnastics training in prepubertal girls. The Journal of Strength and Conditioning Research, 25(2), 520-526.
  • 16. Delitto A, Rose SJ, McKowen JM, Lehman RC, Thomas JA, Shively RA. (1988). Electrical stimulation versus voluntary exercise in strengthening thigh musculature after anterior cruciate ligament surgery. Physical Therapy, 68(5), 660-663.
  • 17. Delitto A, Snyder-Mackler L. (1990). Two Theories of Muscle Strength Augmentation Using Percutaneous Electrical Stimulation. Physical Therapy, 70(3), 158- 164.
  • 18. Dragert K, Zehr EP. (2011). Bilateral neuromuscular plasticity from unilateral training of the ankle dorsiflexors. Experimental Brain Research, 208(2), 217-227.
  • 19. Duchateau J, Hainaut K. (1988). Training effects of sub-maximal electrostimulation in a human muscle. Medicine and Science in Sports and Exercise, 20(1), 99- 104.
  • 20. Dudley GA, Stevenson SW. (2008). Use of Electrical Stimulation in Strength and Power Training, in Strength and Power in Sport, Second Edition (ed P. V. Komi), Blackwell Science Ltd, Oxford, UK. 426-437.
  • 21. Enoka RM. (2002). Activation order of motor axons in electrically evoked contractions. Muscle Nerve, 25(6), 763–764.
  • 22. Everaert DG, Thompson AK, Chong SL, Stein RB. (2010). Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabilitation and Neural Repair, 24(2), 168-177.
  • 23. Farina D, Roberto M, Enoka RM. (2004) The extraction of neural strategies from the surface EMG. Journal of Applied Physiolgy, 96(4), 1486-1495.
  • 24. Farina D, Holobar A, Merletti R, Enoka RM. (2010). Decoding the neural drive to muscles from the surface electromyogram. Clinical Neurophysiology, 121(10) 1616-1623.
  • 25. Farthing JP. (2009). Cross-education of strength depends on limb dominance: implications for theory and application. Exercise and Sport Sciences Reviews, 37(4), 179-187.
  • 26. Feiereisen P, Duchateau J, Hainaut K. (1997). Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Experimental Brain Research, 114(1), 117-123.
  • 27. Francis S, Lin X, Aboushoushah S, White TP, Phillips M, Bowtell R., ve diğ. (2009). fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion. Neuroimage, 44(2), 469-479.
  • 28. Folland JP, Williams, AG. (2007). The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Medicine, 37(2), 145-68.
  • 29. Fuentes I, Cobos AR, Segade LAD, (1998). Muscle fibre types and their distribution in the biceps and triceps brachii of the rat and rabbit. Journal of Anatomy, 192(2), 203-210.
  • 30. Gabriel DA, Kamen G, Frost G. (2006). Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Medicine, 36(2), 133-149.
  • 31. Garhammer J. (1983). An introduction to the use of electrical muscle stimulation with athletes. NSCA Journal, 5(4), 44-45.
  • 32. Geoffrey RS, Giovanni DD. (1986). Torque production in human upper and lower limb muscles with voluntary and electrically stimulated contractions. The Australian j ournal of Phsiotherapy, 32(1), 38-49.
  • 33. Gondin J, Guette M, Ballay Y, Martin A. (2005). Electromyostimulation training effects on neural drive and muscle architecture. Medicine and Science in Sports and Exercise, 37(8), 1291-1299.
  • 34. Gondin J, Guette M, Ballay Y, Martin A. (2006). Neural and muscular changes to detraining after electrostimulation training. European Journal of Applied Physiology, 97(2), 165-173.
  • 35. Gondin J, Duclay J, Martin A. (2006a). Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training. Journal of Neurophysiology, 95(6), 3328-3335
  • 36. Gondin J, Duclay J, Martin A. (2006b). Neural drive preservation after detraining following neuromuscular electrical stimulation training. Neuroscience Letters, 409(3), 210-214.
  • 37. Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti NA, Miotti D., ve diğ. (2011). Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. Journal of Applied Physiology, 110(2), 433-450.
  • 38. Gregory CM, Bickel CS. (2005). Recruitment Patterns in Human Skeletal Muscle During Electrical Stimulation. Physical Therapy, 85(4) ,358-364.
  • 39. Gulick DT, Castel JC, Palermo FX, Draper DO. (2011). Effect of patterned electrical neuromuscular stimulation on vertical jump in collegiate athletes. Sports Health, 3(2), 152-157.
  • 40. Hainaut K, Duchateau J. (1992). Neuromuscular electrical stimulation and voluntary exercise. Sports Medicine, 14(2), 100-113.
  • 41. Hamdy S, Rothwell JC, Aziz Q, Singh KD, Thompson DG. (1998). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neuroscience, 1(1), 64-8.
  • 42. Han BS, Jang SH, Chang Y, Byun WM, Lim SK, Kang DS. (2003). Functional magnetic resonance image finding of cortical activation by neuromuscular electrical stimulation on wrist extensor muscles. American Journal of Physical Medicine and Rehabilitation, 82(1), 17-20.
  • 43. Henneman E, Somjen G, Carpenter DO. (1965a). Excitability and inhibitibility of motoneurons of different sizes. Journal of Neurophysiology, 28(3), 599–620.
  • 44. Henneman E, Somjen G, Carpenter DO. (1965b). Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology, 28(3), 560- 580.
  • 45. Herrero JA, Izquierdo M, Maffiuletti NA, Garcia- Lopez J. (2006). Electromyostimulation and plyometric training effects on jumping and sprint time. International Journal of Sports Medicine, 27(7), 533-539.
  • 46. Hettinga DM, Andrews BJ. (2007). The feasibility of functional electrical stimulation indoor rowing for high-energy training and sport. International Neuromodulation Society, 10(3), 291-297.
  • 47. Holcomb WR. (2005). Is neuromuscular electrical stimulation an effective alternative to resistance training. Strength and Conditioning Journal, 27(3), 76- 79.
  • 48. Holcomb WR. (2006). Effect of training with neuromuscular electrical stimulation on elbow flexion strength. Journal of Sports Science and Medicine, 5(2), 276-281.
  • 49. Hortobágyi T, DeVita P. (2000). Favorable neuromuscular and cardiovascular responses to 7 days of exercise with an eccentric overload in elderly women. The Journals of Gerontology. Series A, Biological Sciences Medical Sciences, 55(8), B401-B410.
  • 50. Hortobágyi T, Maffiuletti NA. (2011). Neural adaptations to electrical stimulation strength training. European Journal of Applied Physiology, 111(10), 2439- 2449.
  • 51. Huang YM, Hsu MJ, Lin CH, Wei HS, Chang YJ. (2010). The Non-linear Relationship between Muscle Voluntary Activation Level and Voluntary Force Measured by the Interpolated Twitch Technique. Sensors, 10, 796-807
  • 52. Hultman E, Sjoholm H, Jaderholm-Ek I, Krynicki J. (1983). Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflüegers Archiv: European Journal of Physiology, 398(2), 139-141.
  • 53. Jubeau M, Zory R, Gondin J, Martin A, Maffiuletti NA. (2006). Late neural adaptations to electrostimulation resistance training of the plantar flexor muscles. European Journal of Applied Physiology, 98(2), 202-211.
  • 54. Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA. (2007). Random motor unit activation by electrostimulation. International Journal of Sports Medicine, 28(11), 901-904.
  • 55. Jubeau M, Gondin J, Martin A, Van Hoecke J, Maffiuletti NA. (2010). Differences in twitch potentiation between voluntary and stimulated quadriceps contractions of equal intensity. Scandinavian Journal of Medicine & Science in Sports, 20(1), 56-62.
  • 56. Kampe KK, Jones RA, Auer DP. (2000). Frequency dependence of the functional MRI response after electrical median nerve stimulation. Human Brain Mapping, 9(2), 106-14.
  • 57. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. (2002). Modulation of human corticomotor excitability by somatosensory input. Journal of Physiology, 540(Pt2), 623-633.
  • 58. Khaslavskaia S, Sinkjaer T. (2005). Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Experimental Brain Research, 162(4), 497-502.
  • 59. Kırdı N, Tunca Ö, Meriç A. (1998). Fonksiyonel elektrik stimülasyonu. Ankara: Hacettepe Üniversitesi Fizik Tedavi ve Rehabilitasyon Yüksekokulu Yayınları.
  • 60. Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JR. (2004). Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Experimental Brain Research, 154(4), 450-460.
  • 61. Knaflitz M, Merletti R, De Luca CJ, (1990). Inference of motor unit recruitment order in voluntary and electrically elicited contractions, Journal of Applied Physiology, 68(4), 1657-1667.
  • 62. Koesler IB. Dafotakis M. Ameli M, Fink GR, Nowak DA. (2009). Electrical somatosensory stimulation improves movement kinematics of the affected hand following stroke. Journal of Neurology, Neurosurgery & Psychiatry, 80(6), 614-619.
  • 63. Laughman RK, Youdas JW, Garrett TR, Chao EYS. (1983). Strength changes in the normal quadriceps femoris muscle as a result of electrical stimulation. Physical Therapy, 63(4), 494-499.
  • 64. Lieber RL, Silva PD, Daniel DM. (1996). Equal effectiveness of electrical and volitional strength training for quadriceps femoris muscles after anterior cruciate ligament surgery. Journal of Orthopaedic Research, 14(1), 131-138.
  • 65. Lindquist ARR, Prado CL, Barros RML, Mattioli R, Costa PHL, Salvini TF. (2007). Gait training combining partial body-weight support a treadmill, and functional electrical stimulation: effects on poststroke gait. Physical Therapy, 87(9), 1144-1154.
  • 66. Maffiuletti NA, Cometti G, Amiridis IG, Martin A, Pousson M, Chatard JC. (2000). The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability. International Journal of Sports Medicine, 21(6), 437-443.
  • 67. Maffiuletti NA, Pensini M, Martin A. (2002a). Activation of human plantar flexor muscles increases after electromyostimulation training. Journal of Applied Physiology, 92(4), 1383–1392.
  • 68. Maffiuletti NA, Dugnani S, Folz M, Di Pierno E, Mauro E. (2002b). Effect Of combined electrostimulation and plyometric training on vertical jump height. Medicine and Science in Sports and Exercise, 34(10), 1638-1644.
  • 69. Maffiuletti NA, Pensini M, Scaglioni G, Ferri A, Ballay Y, Martin A. (2003). Effect of electromyostimulation training on soleus and gastrocnemii H- and T-reflex properties. European Journal of Applied Physiology, 90(5-6), 601-607.
  • 70. Maffiuletti NA, Zory R, Miotti D, Pellegrino MA, Jubeau M, Bottinelli R. (2006). Neuromuscular adaptations to electrostimulation resistance training. American Journal of Physical Medicine & Rehabilitation, 85(2), 167-75.
  • 71. Maffiuletti NA, Bramanti J, Jubeau M, Bizzini M, Deley G, Cometti G. (2009). Feasibility and efficacy of progressive electrostimulation strength training for competitive tennis players. The Journal of Strength and Conditioning Research, 23(2), 677-682.
  • 72. Maffiuletti NA, (2010). Physiological and methodological considerations for the use of neuromuscular electrical stimulation. European Journal of Applied Physiology, 110(2), 223-234.
  • 73. Malatesta D, Cattaneo F, Dugnani S, Maffiuletti NA. (2003). Effects of Electromyostimulation Training and Volleyball Practice on Jumping Ability. Journal of Strength and Conditioning Research, 17(3), 573–579
  • 74. Martin L, Cometti G, Pousson M, Morlon B. (1993). Effect Of Electrical stimulation on the contractile characteristics of the triceps surae muscle. European Journal of Applied Physiology, 67(5), 457-461.
  • 75. Marqueste T, Hug F, Decherchi P, Mes Y. (2003). Changes in neuromuscular function after training by functional electrical stimulation. Muscle & Nerve, 28(2), 181-188.
  • 76. Marqueste T, Messan F, Hug F, Laurin J, Dousset E, Grelot L., ve diğ. (2010). Effect of repetitive biphasic muscle electrostimulation training on vertical jump performances in female volleyball players. International Journal of Sport and Health Science, 8, 50-55.
  • 77. McDonnell, MN, Ridding MC. (2006). Afferent stimulation facilitates performance on a novel motor task. Experimental Brain Research, 170(1), 109-115.
  • 78. Meesen RL, Cuypers K, Rothwell JC, Swinnen SP, Levin O. (2011). The effect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. Human Brain Mapping, 32(6), 872-82.
  • 79. Mendell LM. (2005). The size principle: a rule describing the recruitment of motoneurons. J. Neurophysiol, 93(6), 3024–3026. 
  • 80. Nudo RJ, Plautz EJ, Frost SB. (2001). Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle & Nerve, 24(8), 1000-1019.
  • 81. Paillard, T. (2008). Combined Application of Neuromuscular Electrical Stimulation and Voluntary Muscular Contractions. Sports Medicine, 38(2), 161-177.
  • 82. Paillard T, Noe F, Bernard N, Dupui P, Hazard C. (2008). Effects of two types of neuromuscular electrical stimulation training on vertical jump performance. The Journal of Strength and Conditioning Research, 22(4), 1273-1278.
  • 83. Peckham PH, Knutson JS, (2005). Functional Electrical Stimulation for Neuromuscular Applications. Annual Review of Biomedical Engineering, 7, 327-360.
  • 84. Perez M, Lucia A, Rivero JL, Serrano AL, Calbet JA, Delgado MA., ve diğ. (2002). Effects of transcutaneous short-term electrical stimulation on M.vastus lateralis characteristics of healthy young men. Pflüegers Archiv: European Journal of Physiology, 443(5-6), 866-874.
  • 85. Pichon F, Chatard JC, Martin A, Cometti G. (1995). Electrical stimulation and swimming performance. Medicine & Science in Sports & Exercise, 27(12), 1671-1676.
  • 86. Porcari JP, McLean KP, Foster C, Kernozek T, Crenshaw B, Swenson C. (2002). Effects of electrical muscle stimulation on body composition, muscle strength, and physical appearance. The Journal of Strength and Conditioning Research, 16(2), 165-172.
  • 87. Porcari JP, Miller J, Cornwell K, Foster C, Gibson M, McLean K., ve diğ. (2005). The effects of neuromuscular electrical stimulation training of abdominal strength, endurance, and selected anthropometric measures. Journal of Sports Science and Medicine, 4(1), 66-75.
  • 88. Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD. (2000). Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Experimental Brain Research, 131(1), 135-143.
  • 89. Ridding MC, McKay DR, Thompson PD, Miles TS. (2001). Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clinical Neurophysiology, 112(8), 1461-1469.
  • 90. Sale DG. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20(5), 135-45.
  • 91. Sale DG. (2003). Neural Adaptation to Strength Training. (PV Komi, Ed.) Strength and Power in Sport, 2nd Edition, s. 281-314. Blackwell, London.
  • 92. Sanchez BR, Puche PP, Gonzalez-Badillo JJ. (2005). Percutaneous electrical stimulation in strength training: an update. The Journal of Strength and Conditioning Research, 19(2), 438-448.
  • 93. Seyri MK, Maffiuletti NA. (2011). Effect of Electromyostimulation Training on Muscle Strength and Sports Performance. Strength Conditioning Journal, 33(1), 70-75.
  • 94. Sheffler LR, Chae J. (2007). Neuromuscular Electrical Stimulation in Neurorehabilitation. Muscle & Nerve, 35(5), 562-590.
  • 95. Shield A, Zhou S. (2004). Assessing voluntary muscle activation with the twitch interpolation technique. Sports Medicine, 34(4), 253-67.
  • 96. Sinacore DR, Delitto A, King DS, Roset SJ. (1990). Type II Fiber Activation with Electrical Stimulation: A Preliminary-Report. Physical Therapy, 70(7), 416-422.
  • 97. Singer KP. (1986). The influence of unilateral electrical muscle stimulation on motor unit activity patterns in atrophic human quadriceps. The Australian Journal of Physiotherapy, 32(1), 31-37.
  • 98. Smith GV, Alon G, Roys SR, Gullapalli RP. (2003). Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Experimental Brain Research, 150(1), 33–39.
  • 99. Smith JC, Motl RW. (2005). Electromyographic indices of neuromuscular reflexes. International Journal of Sport and Exercise Psychology, 3(3), 322- 337.
  • 100. Solomonow M, Baratta R, Shoji H, Ambrosia R. (1986). The myoelectric signal of electrically stimulated muscle during recruitment: an inherent feedback parameter for a closed loop control scheme. IEEE Transactions on Biomedical Engineering, 33(8), 735–745.
  • 101. Spiegel J, Tintera J, Gawehn J, Stoeter P, Treede RD. (1999). Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clinical Neurophysiology, 110(1), 47-52.
  • 102. Stein RB, Everaert DG, Thompson AK, Chong SL, Whittaker M, Robertson J., ve diğ. (2010). Long- term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabilitation Neural Repair, 24(2), 152-167.
  • 103. Stevens JE, Mizner RL, Snyder-Mackler L. (2004). Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. Journal of Orthopaedic & Sports Physical Therapy, 34(1), 21–29.
  • 104. Tamaki T, Uchiyama S, Uchiyama Y, Akatsuka A, Yoshimura S, Roy RR., ve diğ. (2000). Limited myogenic response to a single bout of weight-lifting exercise in old rats. American Journal of Physiology- Cell Physiology, 278(6), C1143–C1152.
  • 105. Trimble MH, Enoka RM. (1991). Mechanisms underlying the training effects associated with neuromuscular electrical stimulation. Physical Therapy, 71(4), 273-280.
  • 106. Vanderthommen M, Duchateau J. (2007). Electrical stimulation as a modality to improve performance of the neuromuscular system. Exercise and Sport Sciences Reviews, 35(4), 180-185.
  • 107. Venable M, Collins MA, O’Bryant HS, Denegar CR, Sedivec MJ, Alon G. (1991). Effect of supplemental electrical stimulation on the development of strength, vertical jump performance and power. Journal of Applied Sport Science Research, 5(3), 139-143.
  • 108. Yu JH, Zhou S, Huang LP, Cao LJ, Liu J, Hu Z. (2007). Assessment of muscle activation with twitch interpolation technique in a unilateral electromyostimulation training program. Annual Meeting of Chinese Medical Association, Sports Medicine, Beij ing China, 6-9 April.
  • 109. Ward AR, Shkuratova N. (2002). Russian electrical stimulation: the early experiments. Physical Therapy, 82(10), 1019-1030.
  • 110. Willoughby DS, Simpson S. (1996). The effects of electromyostimulation and dynamic muscular contractions on the strength of college basketball players. The Journal of Strength and Conditioning Research, 10(1), 40-44.
  • 111. Willoughby DS, Simpson S. (1998). Supplemental EMS and dynamic weigth training: Effects on knee extensor strength and vertical jump of female college track&field athletes. The Journal of Strength and Conditioning Research, 12(3), 131-137.
  • 112. Zatsiorsky VM, Kraemer WJ. (2006). Science and Practice of Strength Training, Second Edition. Human Kinetics. 132.
  • 113. Zhou S. (2003). Cross education and neuromuscular adaptations during early stage of strength training. Journal of Exerise Science and Fitness, 1(1), 54-60.
APA Kale M, KAÇOĞLU C, GÜROL B (2014). Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. , 142 - 158.
Chicago Kale Mehmet,KAÇOĞLU Celil,GÜROL BARIŞ Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. (2014): 142 - 158.
MLA Kale Mehmet,KAÇOĞLU Celil,GÜROL BARIŞ Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. , 2014, ss.142 - 158.
AMA Kale M,KAÇOĞLU C,GÜROL B Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. . 2014; 142 - 158.
Vancouver Kale M,KAÇOĞLU C,GÜROL B Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. . 2014; 142 - 158.
IEEE Kale M,KAÇOĞLU C,GÜROL B "Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri." , ss.142 - 158, 2014.
ISNAD Kale, Mehmet vd. "Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri". (2014), 142-158.
APA Kale M, KAÇOĞLU C, GÜROL B (2014). Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. Spor Bilimleri Dergisi, 25(3), 142 - 158.
Chicago Kale Mehmet,KAÇOĞLU Celil,GÜROL BARIŞ Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. Spor Bilimleri Dergisi 25, no.3 (2014): 142 - 158.
MLA Kale Mehmet,KAÇOĞLU Celil,GÜROL BARIŞ Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. Spor Bilimleri Dergisi, vol.25, no.3, 2014, ss.142 - 158.
AMA Kale M,KAÇOĞLU C,GÜROL B Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. Spor Bilimleri Dergisi. 2014; 25(3): 142 - 158.
Vancouver Kale M,KAÇOĞLU C,GÜROL B Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri. Spor Bilimleri Dergisi. 2014; 25(3): 142 - 158.
IEEE Kale M,KAÇOĞLU C,GÜROL B "Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri." Spor Bilimleri Dergisi, 25, ss.142 - 158, 2014.
ISNAD Kale, Mehmet vd. "Elektromyostimülasyon Antrenmanlarının Nöral Adaptasyon ve Sportif Performans Üzerine Etkileri". Spor Bilimleri Dergisi 25/3 (2014), 142-158.