Yıl: 2016 Cilt: 5 Sayı: 1 Sayfa Aralığı: 1 - 18 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ

Öz:
Su kaynaklarında sıklıkla rastlanan mikrokirleticilerin, alıcı ortamdaki çevresel etkileri ve mevcut arıtmasistemleri ile etkin giderilememeleri sebebiyle gelecek yıllarda yasal sınırlamaların hedefi olmasıbeklenmektedir. Özellikle farmasötikler ve geniş kullanım alanına sahip antibiyotikler, hem üretimleri, hem detüketimleri sonrasında çevreye salınmakta ve alıcı ortamı tehdit etmektedir. Biyolojik arıtma sistemleri baştaolmak üzere konvansiyonel arıtma proseslerinin, antibiyotiklerin gideriminde yetersiz kaldığı görülmektedir.Antibiyotiklerin biyolojik olarak bozunmaya dirençli yapısı oksidasyon potansiyeli yüksek olan ileri oksidasyonproseslerinin kullanımını gerektirmektedir. Fotokataliz prosesleri, eko-toksik etkisinin minimum düzeyde olmasıve antibiyotikleri mineralize edebilme potansiyeli ile önemli bir detoksifikasyon prosesidir. Ayrıca prosesingüneş enerjisi ile işletilebilir olması, deneysel çalışma ve pilot ölçekli uygulamalara olan ilgiyi arttırmaktadır. Buçalışma ile literatürde askıda sistem ve yüzeyde sabitlenme prensibine göre yürütülmekte olan fotokataliz prosesiçalışmalarının temel prensip ve mekanizmaları, antibiyotik giderimi ve bakteri inaktivasyonu açısındandeğerlendirilmektedir. Proses parametrelerinin, büyük ölçekli uygulamaların yaygınlaşması ve prosesinmodellenmesi hedeflerine uygun olarak ele alınması üzerinde durulmuştur.
Anahtar Kelime:

EVALUATION OF ANTIBIOTICS AND ANTIBIOTIC RESISTANT BACTERIA REMOVAL BY PHOTO-CATALYSIS

Öz:
Micro-pollutants are one of the most commonly encountered pollutants in water resources. Because ofenvironmental impacts and insufficient rates of removal at the prevalent treatment plant, they involve the mostspecific pollutants that will be the target of future legislations. Following their production and consumption,releases of effluents pose a threat to the receiving environment. Conventional but most essentially of biologicaltreatment plants, are mostly ineffective for removal of antibiotics. Advanced oxidation processes with their highoxidation potentials have the utmost potential for total mineralization of antibiotics that have non-biodegradablestructure. Photo-catalysis is superior with its process mechanism causing relatively lower eco-toxicity and able toprovide total mineralization and may be nominated as a detoxification process option. Since photo-catalysis has potential to be operated under solar irradiation, there is growing interest in both laboratory scale experiments andpilot scale applications. The aim of this review is to evaluate handling and examining fundamentals, mechanismsand parameters of photo-catalysis process within scope of antibiotics and antibiotic resistant bacteria removal. Inthis concept, it s precisely emphasized that processes parameters should be handled in parallel with the underlying goals of making larger scale applications become widespread and modelling the photocatalyticprocess.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] HEBERER, T., “Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data”, Toxicology Letters, 131: 5–17, 2002. [2] GURKAN, Y., TURKTEN, N., HATIPOGLU, A., CINAR, Z., “Photo-catalytic Degradation of Cefazolin over N-Doped TiO2 under UV and Sunlight Irradiation: Prediction of the Reaction Paths via Conceptual DFT”, Chemical Engineering Journal, 184: 113-124, 2012. [3] MICHAEL, I., RIZZO, L., MCARDELL, C., S., MANAIA, C., MERLIN, C., SCHWARTZ, T., DAGOT, C., FATTA KASSINOS, D., “Urban Wastewater Treatment Plants as Hotspots for the Release of Antibiotics in the Environment: a Review”, Water Research, 47, 957–995, 2013. [4] LE-MINH, N., KHAN, S.J., DREWES, J.E., STUETZ, R.M., “Fate of Antibiotics During Municipal Water Recycling Treatment Processes”, Water Research, 44, 4295–4323, 2010. [5] HOMEM, V., ARMINDA A., LUCIA S., "Amoxicillin Degradation at Ppb Levels by Fenton's Oxidation Using Design of Experiments", Science of the Total Environment, 408, 6272-6280, 2010. [6] ESPLUGAS, S., BILA, D.M., KRAUSE, L.G.T., DEZOTTI, M., “Ozonation and Advanced Oxidation Technologies to Remove Endocrine Disrupting Chemicals (EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in Water Effluents”, Journal of Hazardous Materials, 149, 631-642, 2007. [7] WATKINSON, A.J., MURBYC, E.J., COSTANZO, S.D., “Removal of Antibiotics in Conventional and Advanced Wastewater Treatment: Implications for Environmental Discharge and Wastewater Recycling”, Water Research, 41, 4164-4176, 2007. [8] GOGATE, P.R., PANDIT, A.B., “A Review of Imperative Technologies for Wastewater Treatment II: Hybrid Methods”, Advances in Environmental Research, 8, 553-597, 2004. [9] HAMEED, A., ASLAM, M., ISMAIL, I.M., CHANDRASEKARAN, S., KADI, M.W., GONDAL, M.A., “Sunlight Assisted Photocatalytic Mineralization of Nitrophenol Isomers over W 6+ Impregnated ZnO”, Applied Catalysis B: Environmental, 160, 227-239, 2014. [10] BEKBÖLET, M., ARAZ, C.V., “Inactivation of Escherichia coli by Photocatalytic Oxidation”, Chemosphere, 32, 959-965, 1996. [11] BEKBÖLET, M., Photocatalytic Inactivation of Microorganisms in Drinking Water, NOVA Science Publishers Inc., New York, USA, 2007. [12] VENIERI, D., FRAGGEZDAKI, A., KOSTADIMA, M., CHATZISYMEON, E., BINAS, V., ZACHOPULOS, A., MANTZAVINOS, D., “Solar Light and Metal-doped TiO2 to Eliminate Water-Transmitted Bacterial Pathogens: Photocatalyst Characterization and Disinfection Performance”, Applied Catalysis B: Environmental, 154, 93-101, 2014. [13] BYRNE, J.A., DUNLOP, P.S.M., HAMILTON, J.W.J., FERNANDEZ-IBANEZ, P., POLO-LOPEZ, I., SHARMA, P.K., VENNARD, A.S.M., “A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection”, Molecules, 20, 5574-5615, 2015. [14] PULGARIN, C., GUMY, D., RINCON, A.G., HAJDU, R., “Solar Photocatalysis for Detoxification and Disinfection of Water: Different Types of Suspended and Fixed TiO2 Catalysts Study”, Solar Energy, 80, 1376- 1381, 2006. [15] FAURE, M., GERARDIN, F., ANDRE, J.C., PONS, M.N., ZAHRAA, O., “Study of Photocatalytic Damages Induced on E. coli by Different Photocatalytic Supports (various types and TiO2 configurations)”, Journal of Photochemistry and Photobiology A: Chemistry, 222, 323-329, 2011. [16] AHMAD, N., GONDAL, M.A., SHEIKH, A.K., “Comparative Study of Different Solar-based Photo Catalytic Reactors for Disinfection of Contaminated Water”, Desalination and Water Treatment, (ahead-of- print), 1-8, 2015. [17] SADOWSKI, R., STRUS, M., BUCHALSKA, M., HECZKO, P.B., MACYK, W., “Visible Light Induced Photocatalytic Inactivation of Bacteria by Modified Titanium Dioxide Films on Organic Polymers”, Photochemical & Photobiological Sciences, 14, 514-519, 2015. [18] KRYSA, J., MUSILOVA, E., ZITA, J., “Critical Assessment of Suitable Methods Used for Determination of Antibacterial Properties at Photocatalytic Surfaces”, Journal of Hazardous Materials, 195, 100-106, 2011. [19] VEZZOLI, M., FARRELL, T., BAKER, A., PSALTIS, S., MARTENS, W.N., BELL, J.M., “Optimal Catalyst Thickness in Titanium Dioxide Fixed Film Reactors: Mathematical Modelling and Experimental validation”, Chemical Engineering Journal, 234, 57-65, 2013. [20] YANG, S., CARLSON, K.H., “Solid-phase Extraction-High Performance Liquid Chromatography-Ion Trap Mass Spectrometry for Analysis of Trace Concentrations of Macrolide Antibiotics in Natural and Waste Water Matrices”, Journal of Chromatography A, 1038, 141-155, 2004. [21] GROS, M., PETROVICE, M., BARCELO, D., “Development of a Multiresidue Analytical Methodology Based on Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) for Screening and Trace Level Determination of Pharmaceuticals in Surface and Wastewaters”, Talanta, 70, 678-690, 2006. [22] MORSE, A., JACKSON, A., “Fate of Amoxicillin in Two Water Reclamation Systems”, Water, Air, and Soil Pollution, 157, 117-132, 2004. [23] BAUMGARTEN, S., SCHRODER, H., CHARWATH, C., LANGE, M., BEIER, S., PINNERKAMP, J., “Evaluation of Advanced Treatment Technologies for the Elimination of Pharmaceutical Compounds”, Water Science and Technology, 56, 1-8, 2007. [24] GOBEL, A., McARDELL, C.S., SUTER, M.J.F., GIGER, W., “Trace Determination of Macrolide and Sulfonamide Antimicrobials, a Human Sulfonamide Metabolite, and Trimethoprim in Wastewater using Liquid Chromatography Coupled to Electrospray Tandem Mass Spectrometry”, Analytical Chemistry, 76, 4756-4764, 2004. [25] ROBERTS, P.H., THOMAS, K.V., “The Occurrence of Selected Pharmaceuticals in Wastewater Effluent and Surface Waters of the Lower Tyne Catchment", Science of the Total Environment, 356, 143-153, 2006. [26] GOBEL, A., ATHOMSEN, A., McARDELL, C.S., JOSS, A., GIGER, W., “Occurrence and Sorption Behaviour of Sulphonamides, Macrolides, and Trimethoprim in Activated Sludge Treatment”, Environmental Science and Technology, 39, 3981-3989, 2005. [27] YASOJIMA, M., NAKADA, N., KOMORI, K., SUZUKI, Y., TANAKA, H., “Occurrence of Levofloxacin, Clarithromycin and Azithromycin in Wastewater Treatment Plant in Japan”, Water Science and Technology, 53, 227-233, 2005. [28] LIN, A.Y.C., YU, T.H., LATEEF, S.K., “Removal of Pharmaceuticals in Secondary Wastewater Treatment Processes in Taiwan”, Journal of Hazardous Materials, 167, 1163-1169, 2009. [29] GOLET, E., XIFRA, I., SIEGRIST, H., ALDER, A.C., GIGER, W., “Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil”, Environmental Science and Technology, 37, 3243-3249, 2003. [30] MALATO, S., BLANCO, J., VIDAL, A., RICHTER, C., “Photocatalysis with Solar Energy at a Pilot-plant Scale: an Overview”, Applied Catalysis B: Environmental, 37, 1-15, 2002. [31] ELMOLLA, E.S., CHAUDHURI, M., “Photocatalytic Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution using UV/TiO2 and UV/H2O2/TiO2 Photocatalysis”, Desalination, 252, 46-52, 2010. [32] PELIZZETTI, E., MINERO, C., PRAMAURO, E., Photocatalytic Processes for Destruction of Organic Water Contaminants. In Chemical Reactor Technology for Environmentally Safe Reactors and Products (pp. 577-608), Springer, Netherlands 1992. [33] MANTZAVINOS, D., DIMITRAKOPOULOU, D., RETHEMIOTAKI, I., FRONTISTIS, Z., XEKOUKOULOTAKIS, N.P., VENIERI, D., “Degradation, Mineralization and Antibiotic Inactivation of Amoxicillin by UV-A/TiO2 Photocatalysis”, Journal of Environmental Management, 98, 168-174, 2012. [34] RODRIGUEZ, E.M., MARQUEZ, G., LEON, E.A., ÁLVAREZ, P.M., AMAT, A.M., BELTRAN, F.J., “Mechanism Considerations for Photocatalytic Oxidation, Ozonation and Photocatalytic Ozonation of Some Pharmaceutical Compounds in Water”, Journal of Environmental Management, 127, 114-124, 2013. [35] ROBERT, D., MALATO, S., “Solar Photocatalysis: a Clean Process for Water Detoxification”, Science of the Total Environment, 291, 85-97, 2002. [36] HERRMANN, J.M., “Photocatalysis Fundamentals Revisited to Avoid Several Misconceptions”, Applied Catalysis B: Environmental, 99, 461-468, 2010. [37] DALRYMPLE, O.K., STEFANAKOS, E., TROTZ, M.A., GOSWAMI, D.Y., “A Review of the Mechanisms and Modelling of Photocatalytic Disinfection”, Applied Catalysis B: Environmental, 98, 27-38, 2010. [38] MARUGAN, J., Van GRIEKEN, R., SORDO, C., CRUZ, C., “Kinetics of the Photocatalytic Disinfection of Escherichia coli Suspensions”, Applied Catalysis B: Environmental, 82, 27-36, 2009. [39] OLLER, I., DUFFY E.F., AL TOUATI, F., KEHOE, S.C., McLOUGHLIN, O.A., GILL, L.W., GERNJAK, W., McGUIGAN, K.G., “A Novel TiO2-assisted Solar Photocatalytic Batch-Process Disinfection Reactor for the Treatment of Biological and Chemical Contaminants in Domestic Drinking Water in Developing Countries”, Solar Energy, 77, 649-655, 2004. [40] SUN, D.D., TAYAY, J.H., TAN, K.M., “Photocatalytic Degradation of E. coli form in Water”, Water Research, 37, 3452-3462, 2003. [41] DELEKAR, S.D., YADAV, H.M., OTARI, S.V., KOLI, V.B., MALI, S.S., HONG, C.K., PAWAR, S.H., ”Preparation and Characterization of Copper-doped Anatase TiO2 Nanoparticles with Visible Light Photocatalytic Antibacterial activity”, Journal of Photochemistry and Photobiology A: Chemistry, 280, 32-38, 2014. [42] Van GRIEKEN, R., PABLOS, C., MARUGAN, J., MORENO, B., “Photocatalytic Inactivation of Bacteria in a Fixed-bed Reactor: Mechanistic Insights by Epifluorescence Microscopy”, Catalysis Today, 16, 133-139, 2011. [43] CASSANO, A.E., ALFANO, O.M., “Reaction Engineering of Suspended Solid Heterogeneous Photocatalytic Reactors”, Catalysis Today, 58, 167-197, 2000. [44] ZALAZAR, C.S., ROMERO, R.L., MARTIN, C.A., CASSANO, A.E., “Photocatalytic Intrinsic Reaction Kinetics I: Mineralization of Dichloroacetic Acid”, Chemical Engineering Science, 60, 5240-5254, 2005. [45] ZALAZAR, C.S., MARTIN, C.A., CASSANO, A.E., “Photocatalytic Intrinsic Reaction Kinetics. II: Effects of Oxygen Concentration on the Kinetics of the Photocatalytic Degradation of Dichloroacetic Acid”, Chemical Engineering Science, 60, 4311-4322, 2005. [46] DIJKSTRA, M.F.J., PANNEMAN, H.J., WINKELMAN, J.G.M., KELLY, J.J., BEENACKERS, A.A.C.M., “Modelling the Photocatalytic Degradation of Formic Acid in a Reactor with Immobilized Catalyst”, Chemical Engineering Science, 57, 4895-4907, 2002. [47] CHEN, D., LI, F., RAY, A.K., “External and Internal Mass Transfer Effect on Photocatalytic Degradation”, Catalysis Today, 66, 475-485, 2001. [48] MCGREGOR, D.S., HAMMIG, M.D., YANG, Y.H., GERSCH, H.K., KLANN, R.T., “Design Considerations for Thin film Coated Semiconductor Thermal Neutron Detectors—I: Basics Regarding Alpha Particle Emitting Neutron Reactive Films”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 500, 272-308, 2003. [49] DIJKSTRA, M.F.J., KOERTS, E.C.B., BEENACKERS, A.A.C.M., WESSELINGH, J.A., “Performance of Immobilized Photocatalytic Reactors in Continuous Mode”, AIChE Journal, 49, 734-744, 2003. [50] MARUGAN, J., Van GRIEKEN, R., PABLOS, C., SATUFF, M.L., CASSANO, A.E., ALFANO, O.M., “Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the Photocatalytic Inactivation of Bacteria in Water using Suspended Titanium Dioxide”, Applied Catalysis B: Environmental, 102, 404-416, 2011. [51] DUNLOP, P., ALROUSAN, D.M., McMURRAY, T.A., BYRNE, J.A., “Photocatalytic Inactivation of E. coli in Surface Water using Immobilised Nanoparticle TiO2 Films”, Water Research, 43, 47–54, 2009. [52] CASSANO, A., BALLARI, M.D., BRANDI, R., ALFANO, O., “Mass Transfer Limitations in Photocatalytic Reactors Employing Titanium Dioxide Suspensions: I. Concentration Profiles in the Bulk”, Chemical Engineering Journal, 136, 50-65, 2008. [53] KLAUSON, D., BABKINA, J., STEPANOVA, K., KRICHEVSKAYA, M., PREIS, S., “Aqueous Photocatalytic Oxidation of Amoxicillin”, Catalysis Today, 151, 39-45, 2010. [54] KASSINOS, D., KLAVARIOTI, M., MANTZAVINOS, D., “Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes”, Environment International, 35, 402-417, 2009. [55] DOLL, T.E., FRIMMEL, F.H., “Kinetic Study of Photocatalytic Degradation of Carbamazepine, Clofibric Acid, Iomeprol and Iopromide Assisted by Different TiO2 Materials—Determination of Intermediates and Reaction Pathways”, Water Research, 38, 955-964, 2004. [56] REYES, C., FERNANDEZ, J., FREER, J., MONDACA, M.A., ZAROR, C., MALAT, S., MANSILLA, H.D., “Degradation and Inactivation of Tetracycline by TiO2 Photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, 184, 141-146, 2006. [57] YEUNG, K.L., YAU, S.T., MAIRA, A.J., CORONADO, J.M., SORIA, J., YUE, P.L., “The Influence of Surface Properties on the Photocatalytic Activity of Nanostructured TiO2”, Journal of Catalysis, 219, 107-116, 2003. [58] KASSINOS, D.F., VASQUEZ, M.I., KÜMMERER, K., “Transformation Products of Pharmaceuticals in Surface Waters and Wastewater Formed During Photolysis and Advanced Oxidation Processes–Degradation, Elucidation of By-products and Assessment of their Biological Potency”, Chemosphere, 85, 693-709, 2011. [59] MARUGAN, J., Van GRIEKEN, R., PABLOS, C., SORDO, C., “Analogies and Differences Between Photocatalytic Oxidation of Chemicals and Photocatalytic Inactivation of Microorganisms”, Water Research, 44, 789-796, 2010. [60] MIRANDA-GARCIA, N., MALDONADO, M.I., CORONADO, J.M., MALATO, S., “Degradation Study of 15 Emerging Contaminants at Low Concentration by Immobilized TiO2 in a Pilot Plant”, Catalysis Today, 151, 107-113, 2010. [61] OLLER, I., GERNJIAK, W., MALDONADO, M.I., PEREZ ESTRADA, L.A., SANCHEZ PEREZ, J.A., MALATO, S. “Solar Photocatalytic Degradation of Some Hazardous Water-Soluble Pesticides at Pilot-Plant Scale”. Journal of Hazardous Materials, 138(3): 507-517., 2006. [62] ZHANG, J., WANG, J., Li, C., ZHUANG, H. “Photocatalytic Degradation of Methylene blue and Inactivation of Gram-negative Bacteria by TiO2 Banoparticles in Aqueous Suspension”. Food Control, 34(2): 372-377, 2013. [63] GUILLARD, C., HELALI, S., POLO-LOPEZ, M.I., FERNANDEZ-IBANEZ, P., OHTANI, B., AMANO, F., MALATO, S., “Solar Photocatalysis: A Green Technology for E. coli Contaminated Water Disinfection. Effect of Concentration and Different types of Suspended Catalyst”, Journal of Photochemistry and Photobiology A: Chemistry, 276, 31-40, 2014. [64] MADRAS, G., SONTAKKE, S., MOHAN, C., MODAK J., “Visible Light Photocatalytic Inactivation of Escherichia coli with Combustion Synthesized TiO2”, Chemical Engineering Journal, 189, 101-107, 2012. [65] LAZAR, M.A., VARGHESE, S., NAIR, S.S., “Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates”, Catalysts, 2, 572-601, 2009. [66] VILLEGAS-GUZMAN, P., SILVA-AGREDO, J., GONZALEZ-GOMEZ, D., GIRALDO-AQUIRRE, A. L., FLOREZ-ACOSTA, O., TORRES-PALMA, R.A., “Evaluation of Water Matrix Effects, Experimental Parameters, and the Degradation Pathway During the TiO2 Photocatalytical Treatment of the Antibiotic Dicloxacillin”, Journal of Environmental Science and Health, Part A, 50, 40-48, 2015. [67] LI, B., LOGAN, B.E., “Bacterial Adhesion to Glass and Metal-oxide Surfaces”, Colloids and Surfaces B: Biointerfaces, 36, 81-90, 2004. [68] MARUGAN, J., Van GRIEKEN, R., PABLOS, C., SATF, M.L., CASSANO, A.E., ALFANO, O.M., “Kinetic Modelling of Escherichia coli Inactivation in a Photocatalytic Wall Reactor”, Catalysis Today, 240, 9- 15, 2015. [69] SCHWEGMANN, H., RUPPERT, J., FRIMMEL, F.H., “Influence of the pH-Value on the Photocatalytic Disinfection of Bacteria with TiO2–Explanation by DLVO and XDLVO Theory”, Water Research, 47, 1503- 1511, 2013. [70] SOUSA, V.M., MANAIA, C.M., MENDES, A., NUNES, O.C. “Photoinactivation of Various Antibiotic Resistant Strains of Escherichia coli Using a Paint Coat”, Journal of Photochemistry and Photobiology A: Chemistry, 251, 148-153, 2013. [71] KANIOU, S., PITARAKIS, K., BARLAGIANNI, I., POULIOS, I. “Photocatalytic Oxidation of Sulfamethazine”, Chemosphere, 60, 372-380, 2005. [72] CALZA, P., SAKKAS, V.A., MEDANA, C., BAIOCCHI, C., DIMOU, A., PELIZETTI, E., ALBANIS, T., “Photocatalytic Degradation Study of Diclofenac over Aqueous TiO2 Suspensions”, Applied Catalysis B: Environmental, 67, 197-205, 2006. [73] CHATZITAKIS, A., BERBERIDOU, C., PASPALTSIS, I., KYRIAKOU, G., SKLAVIADIS, T., POULIOS, I., “Photocatalytic Degradation and Drug Activity Reduction of Chloramphenicol”, Water Research, 42, 386-394, 2008.
APA ÖZKAL C, PAGANO MERİÇ S (2016). ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. , 1 - 18.
Chicago ÖZKAL Can Burak,PAGANO MERİÇ Süreyya ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. (2016): 1 - 18.
MLA ÖZKAL Can Burak,PAGANO MERİÇ Süreyya ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. , 2016, ss.1 - 18.
AMA ÖZKAL C,PAGANO MERİÇ S ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. . 2016; 1 - 18.
Vancouver ÖZKAL C,PAGANO MERİÇ S ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. . 2016; 1 - 18.
IEEE ÖZKAL C,PAGANO MERİÇ S "ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ." , ss.1 - 18, 2016.
ISNAD ÖZKAL, Can Burak - PAGANO MERİÇ, Süreyya. "ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ". (2016), 1-18.
APA ÖZKAL C, PAGANO MERİÇ S (2016). ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 5(1), 1 - 18.
Chicago ÖZKAL Can Burak,PAGANO MERİÇ Süreyya ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. Niğde Üniversitesi Mühendislik Bilimleri Dergisi 5, no.1 (2016): 1 - 18.
MLA ÖZKAL Can Burak,PAGANO MERİÇ Süreyya ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, vol.5, no.1, 2016, ss.1 - 18.
AMA ÖZKAL C,PAGANO MERİÇ S ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. Niğde Üniversitesi Mühendislik Bilimleri Dergisi. 2016; 5(1): 1 - 18.
Vancouver ÖZKAL C,PAGANO MERİÇ S ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ. Niğde Üniversitesi Mühendislik Bilimleri Dergisi. 2016; 5(1): 1 - 18.
IEEE ÖZKAL C,PAGANO MERİÇ S "ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ." Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 5, ss.1 - 18, 2016.
ISNAD ÖZKAL, Can Burak - PAGANO MERİÇ, Süreyya. "ANTİBİYOTİK VE ANTİBİYOTİKLERE DİRENÇLİ BAKTERİLERİN FOTOKATALİZ PROSESİ İLE GİDERİMİNİN DEĞERLENDİRİLMESİ". Niğde Üniversitesi Mühendislik Bilimleri Dergisi 5/1 (2016), 1-18.