Yıl: 2016 Cilt: 16 Sayı: 3 Sayfa Aralığı: 544 - 554 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Grafen ve Grafen Üretim Yöntemleri

Öz:
2010 yılı nobel fizik ödülünün grafen hakkındaki ''Çığır açan deneyleri'' dolayısıyla Hollandalı Andre Geim ve Rus kökenli İngiliz vatandaşı Konstantin Novoselov'a verilmesi dikkatleri ''mucize materyal'' olarak da bilinen bu malzeme üzerine çekmiştir. Grafen tek atom inceliğinde olduğundan dolayı iki boyutlu kabul edilen, kovalent bağ ile bağlı karbon atomlarının altılı balpeteği örgüsünde kusursuzca dizilmesiyle oluşturduğu üstün özelliklere sahip bir nanomateryal olarak tanınmaktadır. Grafen yapısında karbon-karbon arası bağ uzunluğu 0,142 nm'dir. Grafen içindeki elektronlar oda sıcaklığında kütlesiz rölativistik parçaçıklar gibi davranır, bu sayede grafen kuantum boşluğu etkisi gibi kendine has özellikler sergiler. Grafenin temel üstün özellikleri geniş yüzey alanı (2630 m 2 g - 1) yüksek elektron mobilitesi (200000 cm2/(V s) yüksek ısıl iletkenliği (5000 Wm-1K-1) ve yüksek young modülü (~1100 Gpa) olarak sıralanabilir. Bu malzeme sahip olduğu üstün özellikler nedeniyle bir çok uygulama alanı bulmaktadır bunların başlıcaları transparan elektrotlar, alan etkili transistörler, sensörler, temiz enerji cihazları, nanokompozitler ve organik fotovoltaik cihazlar olarak sayılabilir. Bu çalışmada üstün özellikleri ile ön plana çıkan grafen nanomateryalinin üretim yöntemleri ele alınacaktır.
Anahtar Kelime:

Graphene And Its Production Methods

Öz:
Graphene attracted great attention, after Andre Geim and Konstantin Novoselov were awarded the Nobel prize (2010) in Physics because of their "groundbreaking experiments" on the "miracle material" graphene. Graphene is a two dimensional nanomaterial, which has superior properties, and a layer of covalently bound carbon atoms arranged in a perfect honeycomb (hexagonal) lattice. The carbon-carbon bond length of graphene is approximately 0.142 nm.The electrons on the structure of graphene acts as massless particles and therefore, it causes unique properties like quantum hall effect. Some main properties of graphene are large surface area (2630 m2 g-1), high electron mobility (200,000 cm2/(V s), high thermal conductivity (5000 Wm-1K-1) and high young modulus (~1,100 Gpa). Because of its superior properties, graphene found applications in many areas such as transparent conductors, clean energy devices, sensors, nanocomposites and organic photovoltaic devices. In this study the production methods of graphene will be discussed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ambrosi, A., Chua, C. K., Bonanni, A., & Pumera, M. (2012). Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides. Chemistry of Materials, 24(12), 2292-2298. doi: 1021/cm300382b
  • Ambrosi, A., Chua, C. K., Bonanni, A., & Pumera, M. (2012). Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides. Chemistry of Materials, 24(12), 2292-2298. doi: 10.1021/cm300382b
  • Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M.,Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano, 2(3), 463- 470. doi: 10.1021/nn700375n
  • Bianco, A., Cheng, H. M., Enoki, T., Gogotsi, Y., Hurt, R. H., Koratkar, N., . . . Zhang, J. (2013). All in the graphene family - A recommended nomenclature for two-dimensional carbon materials. Carbon, 65, 1-6. doi: 10.1016/j.carbon.2013.08.038
  • Brodie, B. C. (1859). On the Atomic Weight of Graphite. [-]. [-]. Phil. Trans. R. Soc. Lond., -(149), 249-259. doi: -
  • Chen, J., Yao, B. W., Li, C., & Shi, G. Q. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229. doi: 10.1016/j.carbon.2013.07.055
  • Chen, W. F., Yan, L. F., & Bangal, P. R. (2010). Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C, 114(47), 19885- 19890. doi: 10.1021/jp107131v
  • Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. (2010). Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Materials Sciences, 35(1), 52-71. doi: 10.1080/10408430903505036
  • Chua, C. K., & Pumera, M. (2013). Reduction of graphene oxide with substituted borohydrides. Journal of Materials Chemistry A, 1(5), 1892-1898. doi: 10.1039/c2ta00665k
  • Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291- 312. doi: 10.1039/c3cs60303b
  • Coraux, J., N'Diaye, A. T., Busse, C., & Michely, T. (2008). Structural coherency of graphene on Ir(111). Nano Letters, 8(2), 565-570. doi: 10.1021/nl0728874
  • Cote, L. J., Cruz-Silva, R., & Huang, J. X. (2009). Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite. Journal of the American Chemical Society, 131(31), 11027-11032. doi: 10.1021/ja902348k
  • De Arco, L. G., Zhang, Y., Kumar, A., & Zhou, C. W. (2009). Synthesis, Transfer, and Devices of Singleand Few-Layer Graphene by Chemical Vapor Deposition. Ieee Transactions on Nanotechnology, 8(2), 135-138. doi: 10.1109/Tnano.2009.2013620
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240. doi: 10.1039/b917103g
  • Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3(5), 270-274. doi: 10.1038/nnano.2008.83
  • Fernandez-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., MartinezAlonso, A., & Tascon, J. M. D. (2010). Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 114(14), 6426-6432.
  • Gao, J., Liu, F., Liu, Y. L., Ma, N., Wang, Z. Q., & Zhang, X. (2010). Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials, 22(7), 2213- 2218. doi: 10.1021/cm902635j
  • Gao, W., Alemany, L. B., Ci, L. J., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1(5), 403-408. doi: 10.1038/Nchem.281
  • Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., . . . Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706- 710. doi: 10.1038/nature07719
  • Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., & Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458(7240), 872-U875. doi: 10.1038/nature07872
  • Kwon, S. Y., Ciobanu, C. V., Petrova, V., Shenoy, V. B., Bareno, J., Gambin, V., . . . Kodambaka, S. (2009). Growth of Semiconducting Graphene on Palladium. Nano Letters, 9(12), 3985-3990. doi: 10.1021/nl902140j
  • Li, B., Nan, Y. L., Zhang, P., & Song, X. L. (2016). Structural characterization of individual graphene sheets formed by arc discharge and their growth mechanisms. Rsc Advances, 6(24), 19797-19806. doi: 10.1039/c5ra23990g
  • Li, Y. S., Liao, J. L., Wang, S. Y., & Chiang, W. H. (2016). Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Scientific Reports, 6. doi: ARTN 2275510.1038/srep22755
  • Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 21(10), 3324-3334. doi: 10.1039/c0jm02126a
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. doi: 10.1126/science.1102896
  • Obraztsov, A. N. (2009). CHEMICAL VAPOUR DEPOSITION Making graphene on a large scale. Nature Nanotechnology, 4(4), 212-213.
  • Pan, D. Y., Zhang, J. C., Li, Z., & Wu, M. H. (2010). Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Advanced Materials, 22(6), 734-+. doi: 10.1002/adma.200902825
  • Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011). Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9), 3019- 3023. doi: 10.1016/j.carbon.2011.02.071
  • Park, S., An, J. H., Jung, I. W., Piner, R. D., An, S. J., Li, X. S., . . . Ruoff, R. S. (2009). Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Letters, 9(4), 1593-1597. doi: 10.1021/nl803798y
  • Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi: 10.1038/Nnano.2009.58
  • Pei, S. F., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210-3228. doi: 10.1016/j.carbon.2011.11.010
  • Radic, S., Geitner, N. K., Podila, R., Kakinen, A., Chen, P. Y., Ke, P. C., & Ding, F. (2013). Competitive Binding of Natural Amphiphiles with Graphene Derivatives. Scientific Reports, 3. doi: ARTN 227310.1038/srep02273
  • Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., . . . Kong, J. (2009). Large Area, FewLayer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9(1), 30- 35. doi: 10.1021/nl801827v
  • Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., . . . Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 110(17), 8535-8539. doi: 10.1021/jp060936f
  • Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., . . . Lee, Y. H. (2009). Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 19(12), 1987-1992. doi: 10.1002/adfm.200900167
  • Si, Y., & Samulski, E. T. (2008). Synthesis of water soluble graphene. Nano Letters, 8(6), 1679-1682. doi: 10.1021/nl080604h
  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., . . . Ruoff, R. S. (2007).
  • Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034
  • Staudenmaier L. (1898). Verfahren zur Darstellung der Graphitsäure. [-]. [-]. Berichte der Deutschen Chemischen Gesellschaft, 2(31), 1481 -1487. doi:-
  • Viculis, L. M., Mack, J. J., & Kaner, R. B. (2003). A chemical route to carbon nanoscrolls. Science, 299(5611), 1361-1361. doi: DOI 10.1126/science.1078842
  • Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1), 323 -327. doi: 10.1021/nl072838r
  • Xie, L. S., Sha, J., Ma, Y. L., & Han, J. J. (2013). Thermal Reduction of Graphene Oxide in Organic Solvents for Producing Colloidal Suspensions of Reduced Graphene Oxide Sheets. Fullerenes Nanotubes and Carbon Nanostructures, 21(10), 901-915. doi: 10.1080/1536383x.2013.826196
  • Zhang, J. L., Yang, H. J., Shen, G. X., Cheng, P., Zhang, J. Y., & Guo, S. W. (2010). Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 46(7), 1112-1114. doi:10.1039/b917705a
  • Zhao, J. P., Pei, S. F., Ren, W. C., Gao, L. B., & Cheng, H. M. (2010). Efficient Preparation of Large -Area Graphene Oxide Sheets for Transparent Conductive Films. Acs Nano, 4(9), 5245 -5252. doi:10.1021/nn1015506
  • Zhu, Y. W., Murali, S., Cai, W. W., Li, X. S., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications (vol 22, pg 3906, 2010). Advanced Materials, 22(46), 5226 -5226. doi:10.1002/adma.201090156
  • Zhu, Y. W., Murali, S., Stoller, M. D., Velamakanni, A., Piner, R. D., & Ruoff, R. S. (2010). Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 48(7), 2118 -2122. doi:10.1016/j.carbon.2010.02.001
APA Celik Bedeloglu A, TAŞ M (2016). Grafen ve Grafen Üretim Yöntemleri. , 544 - 554.
Chicago Celik Bedeloglu Ayse,TAŞ Mahmut Grafen ve Grafen Üretim Yöntemleri. (2016): 544 - 554.
MLA Celik Bedeloglu Ayse,TAŞ Mahmut Grafen ve Grafen Üretim Yöntemleri. , 2016, ss.544 - 554.
AMA Celik Bedeloglu A,TAŞ M Grafen ve Grafen Üretim Yöntemleri. . 2016; 544 - 554.
Vancouver Celik Bedeloglu A,TAŞ M Grafen ve Grafen Üretim Yöntemleri. . 2016; 544 - 554.
IEEE Celik Bedeloglu A,TAŞ M "Grafen ve Grafen Üretim Yöntemleri." , ss.544 - 554, 2016.
ISNAD Celik Bedeloglu, Ayse - TAŞ, Mahmut. "Grafen ve Grafen Üretim Yöntemleri". (2016), 544-554.
APA Celik Bedeloglu A, TAŞ M (2016). Grafen ve Grafen Üretim Yöntemleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(3), 544 - 554.
Chicago Celik Bedeloglu Ayse,TAŞ Mahmut Grafen ve Grafen Üretim Yöntemleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 16, no.3 (2016): 544 - 554.
MLA Celik Bedeloglu Ayse,TAŞ Mahmut Grafen ve Grafen Üretim Yöntemleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol.16, no.3, 2016, ss.544 - 554.
AMA Celik Bedeloglu A,TAŞ M Grafen ve Grafen Üretim Yöntemleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2016; 16(3): 544 - 554.
Vancouver Celik Bedeloglu A,TAŞ M Grafen ve Grafen Üretim Yöntemleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2016; 16(3): 544 - 554.
IEEE Celik Bedeloglu A,TAŞ M "Grafen ve Grafen Üretim Yöntemleri." Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, ss.544 - 554, 2016.
ISNAD Celik Bedeloglu, Ayse - TAŞ, Mahmut. "Grafen ve Grafen Üretim Yöntemleri". Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 16/3 (2016), 544-554.