Yıl: 2017 Cilt: 20 Sayı: 2 Sayfa Aralığı: 257 - 265 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi

Öz:
Fiber optik kablo içerisinde ışık dalgaları ilerlerken, bir fotonun daha düşük enerjili fotona elastik olmayan saçılmasından dolayı, yayılan ışığın dalga boyundan farklı dalga boylarında, geri veya ileri yönlü, yeni ışık dalgaları oluşmaktadır. Bu ışık dalgaları bazı uygulamalarda istenmezken, bazı uygulamalarda ise yeni oluşan ışık dalgalarından faydalanılmaktadır. Bilinen en yaygın saçılma uygulamaları ise Brillouin ve Raman saçılmalarıdır. Bu saçılmalar kullanılarak fiber yükselteçler, fiber lazerler ve fiber sensörler üretilmektedir. Bu çalışmada, Raman saçılması teorik olarak incelenerek, tek ve çok kanallı Raman düzeneklerinde fiber boyuna bağlı olarak oluşan doğrusal olmayan Raman saçılmasının etkileri analiz edilmiştir.
Anahtar Kelime:

Konular: Optik Telekomünikasyon

The Analysis of Raman Scattering in the Fiber Optic Cable

Öz:
The light waves travel in fiber optic cable, due to the inelastic scattering of a photon to a lower energy photon, new light waves consists which have different wavelengths from the emitted light waves wavelength, back or forward directions. The emerging light waves are utilized in some applications although these light waves are undesirable in some applications. The most widely known applications are the Raman scattering and Brillouin scattering. This scattering using fiber amplifiers, fiber lasers and fiber sensors are produced. In this study, examining the Raman scattering theory, the analyzed effects of non-linear Raman scattering which occurs due to length of the fiber at the single and multi-channel Raman configurations.
Anahtar Kelime:

Konular: Optik Telekomünikasyon
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Boyd, R. W., "Nonlinear Optics", Academic Press, SanDi- ego, CA, (1992).
  • Shen, Y. R., Bloembergen, N., "Theory of stimulated Bril- louin and Raman scattering", Phys. Rev. A, 137: 1787- 1805, (1965).
  • Singh, S. P. and N. Singh, "Nonlinear effects in optical fi- bers: origin, management and applications", Progress In Electromagnetics Research, 73: 249-275, (2007).
  • Buckland, E. L., Boyd, R. W., "Electrostrictive contribution to the intensity-dependent refractive index of optical fiber", Opt. Lett., 21: 1117-1119, (1996).
  • Buckland, E. L., Boyd, R. W., "Measurement of the frequ- ency response of the electrostrictive nonlinearity in optical fiber", Opt. Lett., 22: 676-678, (1997).
  • Agrawal, G. P., "Nonlinear Fiber Optics", 3rd edition, Aca- demic Press, SanDiego, CA, (2001).
  • Bars, F. and L. Resnic, "On the theory of the electromagne- tic wave-propagation through inhomogeneous dispersive media", Journal of Electromagnetic Waves and Applica- tions, 19: 925-931, (2005).
  • Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electro- magnetic scattering by mixed conducting/dielectric objects using high-order MOM", Progress In Electromagnetics Research, 66: 51-63, (2006).
  • Anupam, R., M. Chandran, C. K. Anandan, P. Mohanan, and K. Vasudevan, "Scattering behavior of fractal based metallodielectric structures", Progress In Electromagne- tics Research, 69: 323-339, (2007).
  • Gong, Y., Zhang, B., Notake, T., Minamide, H., Olivo, M., Sugii, S., "Investigations on Polarimetric Terahertz Frequ- ency Domain Spectroscopy", Applied Physics A, 115: 83- 86, (2014).
  • Yong, T., Anmin, Z., Kai, L., "Raman Scattering in super- conducting crystals'', Superconductor Science & Techno- logy, 29: 1-6, (2016).
  • Zhang, Y., Wang, C., Wang, J., "Nanocap array of Au:Ag composite for surface-enhanced Raman scattering", Spect- rochimica Acta Part A-Molecular And Biomolecular Spectroscopy, 152: 461-467, (2016).
  • Zhou, Q., Meng, G., Wu, N., "Review of microfluidic app- roaches for surface-enhanced Raman scattering", Sensors And Actuators B-Chemical, 223: 447-452, (2016).
  • Garrido, C., Weiss-Lopez, Boris E., Campos Vallette, M. M. "Surface-enhanced Raman scattering activity of negati- vely charged bio-analytes from a modified silver colloid", Spectroscopy Letters, 49: 11-18, (2015).
  • Jamil, Arniza K. M., Sivanesan, A., Izake, Emad L., "Mo- lecular recognition of 2,4,6-trinitrotoluene by 6-ami- nohexanethiol and surface-enhanced Raman scattering sen- sor", Sensors And Actuators B-Chemical, 221: 273-280, (2015).
  • Qi, M., Huang, X., Zhou, Yujie., "Label-free surface-en- hanced Raman scattering strategy for rapid detection of pe- nicilloic acid in milk products", Food Chemistry, 197: 723-729, (2016).
  • Chang, Y., "Low temperature and large-scale growth of ZnO nanoneedle arrays with enhanced optical and surface- enhanced Raman scattering properties", Sensors And Ac- tuators B-Chemical, 225: 498-503, (2016).
  • Wang, J., Duan, G., Liu, G., "Detection of dimethyl methylphosphonate by thin water film confined surface-en- hanced Raman scattering method", Journal Of Hazardous Materials, 303: 94-100, (2016).
  • Sharma, V., Sinha, N., Dutt, S., "Tuning the surface enhan- ced Raman scattering and catalytic activities of gold nano- rods by controlled coating of platinum", Journal Of Col- loid And Interface Science, 463: 180-187, (2016).
  • Akintola, K., Andrews, G. T., Curnoe, S. H., "Raman and Brillouin scattering studies of bulk 2H-WSe2", Journal Of Physics-Condensed Matter, 27: 395-401, (2015).
  • Sharma, P., "Stimulated Raman scattering of ultra intense hollow Gaussian beam in relativistic plasma", Laser And Particle Beams, 33: 489-498 (2015).
  • Golasa, K., Grzeszczyk, M., Binder, J., "The disorder-indu- ced Raman scattering in Au/MoS2 heterostructures", Aip Advances, 5: 1-7, (2015).
  • Motochi, I., Naidoo, S. R., Mathe, B. A., "Surface Brillouin scattering on annealed ion-implanted CVD diamond'', Di- amond And Related Materials, 56: 6-12, (2015).
  • Zalamai, V. V., Stamov, I. G., Syrbu, N. N., "Resonance Raman scattering and excitonic spectra in crystals'', Jour- nal Of Luminescence, 160: 195-201, (2015).
  • Gong, H., Yang, P., Wuliji, H., "Gain characteristic of spontaneous Brillouin scattering in 50 km single-mode fi- ber with a Raman pump'', Optik, 126: 2731-2734, (2015).
  • Ramani, T., Prasanth, K., Sreedhar, B., "Air stable colloidal copper nanoparticles: Synthesis, characterization and their surface-enhanced Raman scattering properties'', Physica E-Low-Dimensional Systems & Nanostructures, 77: 65- 71, (2016).
  • Grima-Gallardo, P., Salas, M., Contreras, O., "X-ray diffraction, differential thermal analysis, optical absorption and Raman scattering'', Journal Of Alloys And Compo- unds, 658: 749-756, (2016).
  • Meng, Z., Yakovlev, V., Utegulov, Z., "Surface-enhanced Brillouin scattering in a vicinity of plasmonic gold nanost- ructures", Conference on Plasmonics in Biology and Me- dicine XII, San Francisco, (2015).
  • Lin, Y., Hsu, Y., Chuang, C., "Thermally activated Cu/Cu2S/ZnO nanoarchitectures with surface-plasmon-en- hanced Raman scattering'', Journal Of Colloid And Inter- face Science, 464: 66-72, (2016).
  • Feng, C., Diels, J., Xu, X., "Ring-shaped backward stimu- lated Raman scattering driven by stimulated Brillouin scat- tering'', Optics Express, 23: 17035-17045 (2015).
  • Bloembergen, N. & Shen, Y. R., "Coupling between vibra- tions and light waves in , Raman laser media'', Phys. Rev. Lett., 12: 504-507, (1964).
  • Lan, G.-L., P. K. Banerjee, and S. S. Mitra, "Raman scatte- ring in optical fibers", Journal of Raman Spectroscopy, 11: 416-423, (1981).
  • Singh, S.P. R. Gangwar, and Singh, N., "Nonlinear scatte- ring effects in optical fıbers'', Progress In Electromagne- tics Research, PIER 74: 379-405 (2007).
  • Lewis, S. A. E., S. V. Chernikov, and J. R. Taylor, "Tem- perature dependent gain and noise in fiber Raman ampli- fier", Opt. Lett., 24: 1823-1825, (1999).
  • Stolen, R. H., E. P. Ippen, and A. R. Tynes, "Raman oscil- lation in glass optical waveguide", Appl. Phys. Lett. 20: 62- 64, (1972).
  • Stolen, R. H. and E. P. Ippen, "Raman gain in glass optical waveguides", Appl. Phys. Lett., 22: 276-278, (1973).
APA BOYDAK S, Yücel M (2017). Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. , 257 - 265.
Chicago BOYDAK Selim,Yücel Murat Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. (2017): 257 - 265.
MLA BOYDAK Selim,Yücel Murat Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. , 2017, ss.257 - 265.
AMA BOYDAK S,Yücel M Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. . 2017; 257 - 265.
Vancouver BOYDAK S,Yücel M Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. . 2017; 257 - 265.
IEEE BOYDAK S,Yücel M "Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi." , ss.257 - 265, 2017.
ISNAD BOYDAK, Selim - Yücel, Murat. "Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi". (2017), 257-265.
APA BOYDAK S, Yücel M (2017). Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. Politeknik Dergisi, 20(2), 257 - 265.
Chicago BOYDAK Selim,Yücel Murat Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. Politeknik Dergisi 20, no.2 (2017): 257 - 265.
MLA BOYDAK Selim,Yücel Murat Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. Politeknik Dergisi, vol.20, no.2, 2017, ss.257 - 265.
AMA BOYDAK S,Yücel M Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. Politeknik Dergisi. 2017; 20(2): 257 - 265.
Vancouver BOYDAK S,Yücel M Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi. Politeknik Dergisi. 2017; 20(2): 257 - 265.
IEEE BOYDAK S,Yücel M "Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi." Politeknik Dergisi, 20, ss.257 - 265, 2017.
ISNAD BOYDAK, Selim - Yücel, Murat. "Fiber Optik Kabloda Meydana Gelen Raman Saçılmasının Analizi". Politeknik Dergisi 20/2 (2017), 257-265.