Yıl: 2017 Cilt: 23 Sayı: 2 Sayfa Aralığı: 119 - 125 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları

Öz:
Kılıf akımı yüksek gerilim yeraltı kablolu hatlarda arızalara ve elektrik çarpılmalarına neden olmaktadır. Ayrıca kabloda ek ısı meydana getirerek kablonun akım taşıma kapasitesini düşürür. Kılıf akımını düşürmek için farklı önlemler alınabilir. Fakat en uygun önlemin alınabilmesi için öncelikle hatta oluşacak kılıf akımının, hat daha kurulmadan proje aşamasında belirlenmesi gerekir. Bu çalışmada yeni kurulacak olan bir yüksek gerilim yeraltı kablolu hattın kılıf akımı, yapay sinir ağı ile parçacık sürü optimizasyonu, inertia ağırlıklı parçacık sürü optimizasyonu ve genetik algoritma kullanılarak oluşturulan melez yöntemler ile tahmin edilmiştir. Yapay sinir ağı tabanlı melez yöntemlerin eğitimi için PSCAD/EMTDC programında modeli oluşturulan yüksek gerilim yeraltı kablolu hattın benzetimlerinden elde edilen veriler kullanılmıştır. Çalışmalar sonunda melez yöntemlerin yapay sinir ağına göre doğruluk bakımından üstünlük sağladığı görülmüştür. Melez yöntemlerin sonuçları kendi içlerinde karşılaştırıldığında ise inertia ağırlıklı parçacık sürü optimizasyonu ile yapay sinir ağının kullanımı sonucu elde edilen melez yöntem sonuçlarının diğer yöntemlere göre üstün olduğu görülmüştür. Böylece önerilen yöntem ile yüksek gerilim yeraltı kablolu hattın kılıf akımı proje aşamasında tespit edilecek ve kılıf akımının düşürülmesi için en uygun önlemler uygulanarak arızaların ve elektrik çarpmaların önüne geçildiği gibi kablo performansı da artırılacaktır
Anahtar Kelime:

Forecasting applications of the sheath current of high voltage cable with artificial neural network based hybrid methods

Öz:
The sheath current causes cable faults and electroshock risk in high voltage underground cable lines. Also the sheath current increases cable temperature and it reduces cable ampacity. Hence, cable performance decreases due to the sheath current. Different precautions can be taken to reduce the sheath current effects in high voltage underground cable line. However, primarily the sheath current must be detected at the project phase of high voltage underground cable line. In literature, artificial neural networks are used for forecasting studies. In this study, artificial neural network (ANN) is used with particle swarm optimization, particle swarm optimization with inertia weight and genetic algorithm to generate hybrid ANN methods for forecasting of the sheath current. High voltage underground cable line is modeled in PSCAD/EMTDC to measure the sheath current of different high voltage underground lines, and the obtained data from PSCAD/EMTDC are used to train artificial neural network based hybrid methods to forecast the sheath current of any high voltage underground cable line. When particle swarm optimization with inertia weight is used with artificial neural network, hybrid ANN-iPSO method is developed. The results of ANN-iPSO are better than the results of ANN-GA and ANN-PSO. If ANNiPSO is used to determine the sheath current, the sheath current of high voltage underground cable line can be determined at the project phase of high voltage underground cable line. Hence, the most suitable precautions can be implemented, and cable faults and electroshock risk can be prevented, also cable performance is increased in high voltage underground cable line
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
APA AKBAL B (2017). Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. , 119 - 125.
Chicago AKBAL Bahadır Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. (2017): 119 - 125.
MLA AKBAL Bahadır Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. , 2017, ss.119 - 125.
AMA AKBAL B Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. . 2017; 119 - 125.
Vancouver AKBAL B Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. . 2017; 119 - 125.
IEEE AKBAL B "Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları." , ss.119 - 125, 2017.
ISNAD AKBAL, Bahadır. "Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları". (2017), 119-125.
APA AKBAL B (2017). Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(2), 119 - 125.
Chicago AKBAL Bahadır Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23, no.2 (2017): 119 - 125.
MLA AKBAL Bahadır Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol.23, no.2, 2017, ss.119 - 125.
AMA AKBAL B Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017; 23(2): 119 - 125.
Vancouver AKBAL B Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017; 23(2): 119 - 125.
IEEE AKBAL B "Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları." Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23, ss.119 - 125, 2017.
ISNAD AKBAL, Bahadır. "Yüksek gerilim kablolarında oluşan kılıf akımının yapay sinir ağı tabanlı melez yöntemlerle tahmin uygulamaları". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23/2 (2017), 119-125.