Yıl: 2017 Cilt: 41 Sayı: 4 Sayfa Aralığı: 356 - 366 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.)

Öz:
The objective of this study was to simultaneously determine changes in tryptophan and melatonin contents of eggplant seedlings at two different growth stages during a 24-h period. Variations in tryptophan and melatonin levels in different organs (roots, leaves, fruits, and seeds) and the distribution and accumulation of these molecules in these organs during various growth stages were also investigated. In eggplant seedlings, melatonin showed a strong peak at the beginning of the dark period, while tryptophan levels were at the lowest. Melatonin was also high in the middle of the light period and an inverse relationship was observed between melatonin and tryptophan levels. These results indicated that melatonin fluctuations in eggplant seedlings are likely the result of the combined effects of endogenous and environmental factors. Melatonin was found in high quantities in seedlings and mature seeds, and its concentration in leaves and roots decreased dramatically as the growth stages progressed. On the other hand, tryptophan content in leaves and roots increased markedly as the growth season progressed, and the highest tryptophan levels were detected in roots of older plants, flowers, and fruits at mature seed stage. Significant seasonal variations in melatonin levels suggest that melatonin may play a key role in eggplant developmental processes.
Anahtar Kelime:

Konular: Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Arnao MB (2014). Phytomelatonin: discovery, content, and role in plants. Advances in Botany 2014; 2014: 815769.
  • Arnao MB, Hernández-Ruiz J (2009). Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochem Analysis 20: 14-18.
  • Arnao MB, Hernández-Ruiz J (2013). Growth conditions influence the melatonin content of tomato plants. Food Chem 138: 1212- 1214.
  • Arnao MB, Hernández-Ruiz J (2015a). Functions of melatonin in plants: a review. J Pineal Res 59: 133-150.
  • Arnao MB, Hernández-Ruiz J (2015b). Phytomelatonin: searching for plants with high levels for use as a natural nutraceutical. In: Atta-ur-Rahman FRS, editor. Studies in Natural Products Chemistry, Vol. 46. Amsterdam, the Netherlands: Elsevier, pp. 519-545.
  • Badria FA (2002). Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J Med Food 5: 153-157.
  • Beilby MJ, Turi CE, Baker TC, Tymm FJM, Murch SJ (2015). Circadian changes in endogenous concentrations of indole-3- acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown). Plant Signaling and Behavior 10: e1082697.
  • Boccalandro HE, Gonzalez CV, Wunderlin, DA, Silva MF (2011). Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 51: 226-232.
  • Byeon Y, Park S, Lee HY, Kim YS, Back KW (2014). Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. J Pineal Res 56: 275-282.
  • Chen G, Huo Y, Tan DX, Liang Z, Zhang W, Zhang Y (2003). Melatonin in Chinese medicinal herbs. Life Sci 73: 19-26.
  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18: 28-31.
  • Hardeland R (2008). Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci 65: 2001-2018.
  • Hardeland R, Poeggeler B (2003). Non-vertebrate melatonin. J Pineal Res 34: 233-241.
  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, OhtaniKaneko R, Hara M, Suzuki T, Reiter RJ (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35: 627-634.
  • Hernández IG, Gomez FJV, Cerutti S, Arana MV, Silva MF (2015). Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiol Bioch 94: 191-196.
  • Hernández-Ruiz J, Cano G, Arnao MB (2005). Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39: 137-142.
  • Kang K, Lee K, Park S, Byeon Y, Back K (2013). Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J Pineal Res 55: 7-13.
  • Kolár J, Johnson CH, Macháčková I (1999). Presence and possible role of melatonin in a short-day flowering plant, Chenopodium rubrum. In: Olcase J, editor. Melatonin after Four Decades: An Assessment of Its Potential, Vol. 460. Berlin, Germany: Springer, pp. 391-393.
  • Kolár J, Macháčková I (1994). Melatonin: does it regulate rhythmicity and photoperiodism also in higher plants? Flower Newsletter 17: 53-54.
  • Korkmaz A, Değer Ö, Cuci Y (2014). Profiling the melatonin content in organs of the pepper plant during different growth stages. Sci Hortic-Amsterdam 172: 242-247.
  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80: 2587.
  • Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W (2000). High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67: 3023-3029.
  • Murch SJ, Alan AR, Cao J, Saxena PK (2009). Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47: 277-283.
  • Okazaki M, Ezura H (2009). Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar Micro-Tom. J Pineal Res 46: 338-343.
  • Okazaki M, Higuchi K, Hanawa Y, Shiraiwa Y, Ezura H (2009). Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J Pineal Res 46: 373-382.
  • O’Neil SD (1997). Pollination regulation of flower development. Annu Rev Plant Phys 48: 547-574.
  • Paredes SD, Korkmaz A, Manchester LC, Tan DX, Reiter RJ (2009). Phytomelatonin: a review. J Exp Bot 60: 57-69.
  • Park S, Le TNN, Byeon Y, Kim YS, Back K (2013). Transient induction of melatonin biosynthesis in rice (Oryza sativa L.) during the reproductive stage. J Pineal Res 55: 40-45.
  • Paul MA, Love RJ, Hawton A, Arendt J (2015). Sleep and the endogenous melatonin rhythm of high artic residents during summer and winter. Physiol Behav 141: 199-206.
  • Posmyk MM, Janas KM (2009). Melatonin in plants. Acta Physiol Plant 31: 1-11.
  • Pratap V, Sharma YK (2010). Impact of osmotic stress on seed germination and seedling growth in black gram (Phaseolus mungo). J Environ Biol 31: 721-726.
  • Reiter RJ, Tan DX, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A (2015). Phytomelatonin: assisting plants to survive and thrive. Molecules 20: 7396-7437.
  • Tal O, Haim A, Harel O, Gerchman Y (2011). Melatonin as an antioxidant and its semi-lunar rhythm in green macro alga Ulva sp. J Exp Bot 62: 1903-1910.
  • Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, RosalesCorral S, Reiter RJ (2012). Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63: 577-597.
  • Tan DX, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ (2007). Novel rhythms of N1-acetyl-N2-formyl-5- methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 21: 1724- 1729.
  • Tan DX, Manchester LC, Liu X, Rosales-Corral SA, AcunaCastroviejo D, Reiter RJ (2013). Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54: 127-138.
  • Thakur P, Kumara S, Malik JA, Berger JD, Nayyar H (2010). Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67: 429-443.
  • Van Tassel D, Li J, O’Neill S (1993). Melatonin: identification of a potential dark signal in plants. Plant Physiol 102: 659.
  • Van Tassel D, Roberts N, Lewy A, O’Neill S (2001). Melatonin in plant organs. J Pineal Res 31: 8-15.
  • Wolf K, Kolár J, Witters E, van Dongen W, van Onckelen H, Macháčková I (2001). Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J Plant Physiol 158: 1491-1493.
  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2015). Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66: 647-656.
  • Zhao Y, Tan DX, Lei Q, Chen H, Wang L, Li QT, Gao Y, Kong J (2013). Melatonin and its potential biological functions in the fruits of sweet cherry. J Pineal Res 55: 79-88.
  • Zuo B, Zheng X, He P, Wang L, Lei Q, Feng C, Zhou J, Li Q, Han Z, Kong J (2014). Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J Pineal Res 57: 408- 417.
APA Korkmaz A, YAKUPOĞLU G, Köklü Ş, CUCI Y, KOCAÇİNAR F (2017). Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). , 356 - 366.
Chicago Korkmaz Ahmet,YAKUPOĞLU Gökçen,Köklü Şebnem,CUCI YAKUP,KOCAÇİNAR Ferit Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). (2017): 356 - 366.
MLA Korkmaz Ahmet,YAKUPOĞLU Gökçen,Köklü Şebnem,CUCI YAKUP,KOCAÇİNAR Ferit Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). , 2017, ss.356 - 366.
AMA Korkmaz A,YAKUPOĞLU G,Köklü Ş,CUCI Y,KOCAÇİNAR F Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). . 2017; 356 - 366.
Vancouver Korkmaz A,YAKUPOĞLU G,Köklü Ş,CUCI Y,KOCAÇİNAR F Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). . 2017; 356 - 366.
IEEE Korkmaz A,YAKUPOĞLU G,Köklü Ş,CUCI Y,KOCAÇİNAR F "Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.)." , ss.356 - 366, 2017.
ISNAD Korkmaz, Ahmet vd. "Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.)". (2017), 356-366.
APA Korkmaz A, YAKUPOĞLU G, Köklü Ş, CUCI Y, KOCAÇİNAR F (2017). Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). Turkish Journal of Botany, 41(4), 356 - 366.
Chicago Korkmaz Ahmet,YAKUPOĞLU Gökçen,Köklü Şebnem,CUCI YAKUP,KOCAÇİNAR Ferit Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). Turkish Journal of Botany 41, no.4 (2017): 356 - 366.
MLA Korkmaz Ahmet,YAKUPOĞLU Gökçen,Köklü Şebnem,CUCI YAKUP,KOCAÇİNAR Ferit Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). Turkish Journal of Botany, vol.41, no.4, 2017, ss.356 - 366.
AMA Korkmaz A,YAKUPOĞLU G,Köklü Ş,CUCI Y,KOCAÇİNAR F Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). Turkish Journal of Botany. 2017; 41(4): 356 - 366.
Vancouver Korkmaz A,YAKUPOĞLU G,Köklü Ş,CUCI Y,KOCAÇİNAR F Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.). Turkish Journal of Botany. 2017; 41(4): 356 - 366.
IEEE Korkmaz A,YAKUPOĞLU G,Köklü Ş,CUCI Y,KOCAÇİNAR F "Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.)." Turkish Journal of Botany, 41, ss.356 - 366, 2017.
ISNAD Korkmaz, Ahmet vd. "Determining diurnal and seasonal changes in melatonin and tryptophan contents of eggplant (Solanum melongena L.)". Turkish Journal of Botany 41/4 (2017), 356-366.