Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma

Yıl: 2017 Cilt: 28 Sayı: 4 Sayfa Aralığı: 8077 - 8103 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma

Öz:
Bu çalışma kapsamında tasarım spektrumu parametreleri (sabit ivme bölgesi köşe periyotları ve zemin faktörleri) Kuzey Anadolu Fay Hattı üzerinde Müberra seçilen bir bölge için yapılan olasılıksal sismik tehlike analizlerine bağlı olarak önerilmiştir. Sonuçlar farklı zemin türleri ve farklı dönüş periyotlarına göre elde edilmiştir. Olasılıksal sismik tehlike analizleri için alansal kaynak ve fay ve mekansal düzleştirilmiş kaynak model olmak üzere iki farklı sismik model kullanılmıştır. Yer hareketi karakterizasyonu bölgedeki sismik aktiviteyi en iyi şekilde temsil edebilecek yer hareketi tahmin denklemlerinin seçilmesiyle yapılmıştır. Sabit ivme bölgesi köşe periyotları ve zemin faktörlerinin hesabı PGA veya T = 0.2 s ve 1.0 s' deki kaya zemin spektal ivme değerlerine bağlı olarak üretilen ampirik bağıntılara dayanmaktadır.
Anahtar Kelime:

Konular: İnşaat Mühendisliği

A Study Depending on the Probabilistic Seismic Hazard Analyses for Design Spectrum Parameters

Öz:
Within the scope of this study, design spectrum parameters (constant acceleration region,corner periods and site factors) are proposed, depending on probabilistic seismic hazardanalyses conducted in a region located in a part of the North Anatolian Fault Zone. Theoutcomes are obtained for different site conditions and return periods. Two differentseismic source models which are area based source, and fault and locational seismic sourcemodels are used for probabilistic seismic hazard analyses. The ground-motioncharacterization is handled by selecting the ground-motion prediction equations that bestreflect the seismic excitations around the investigated region. The computation of constantacceleration region corner periods and site factors are based on the empirical relationshipsthat depend on the PGA or spectral accelerations at T = 0.2 s and 1.0 s for rock sites.
Anahtar Kelime:

Konular: İnşaat Mühendisliği
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik (DBYBHY), T.C. Bayındırlık ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi, http://www.deprem.gov.tr, Ankara, 2007.
  • [2] CEN, Eurocode 8: Design of structures for earthquake Resistance - Part 1: General rules, seismic actions, and rules for buildings, EN 1998-1:2004, Comité Européen de Normalisation, Brussels, 2004.
  • [3] Building Seismic Safety Council (BSSC), NEHRP Recommended Seismic Provisions For New Buildings and Other Structures: Part 1, Provisions, Federal Emergency Management Agency (FEMA-P-1050-1), Washington, D.C., 2015.
  • [4] Newmark, N. M., Hall, W. J., Earthquake spectra and design, Earthquake Engineering Research Institute, Berkeley, California, 1982.
  • [5] Rey, J., Faccioli, E., Bommer, J. J., Derivation of design soil coefficients (S) and response spectel shapes for Eurocode 8 using the European Strong-Motion Database, Journal of Seismology, 6, 547-555, 2002.
  • [6] Kalkan, E., Gülkan, P., Site-Dependent Spectra Derived from Ground Motion Records in Turkey, Earthquake Spectra, 20, 1111-1138, 2004.
  • [7] Pitilakis, K., Riga, E., Anastasiadis, A., Design spectra and amplification factors for Eurocode 8, Bulletin of Earthquake Engineering, 10, 1377-1400, 2012.
  • [8] Giardini, D., Woessner, J., Danciu, L., Mapping Europe's Seismic Hazard, EOS 95, 261-262, 2014.
  • [9] Seyhan, E., Stewart, J.P., Semi-Empirical Nonlinear Site Amplification from NGAWest2 Data and Simulations, Earthquake Spectra, 30, 1241-1256, 2014.
  • [10] Türkiye Bina Deprem Yönetmeliği (TBDY) Taslağı, T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Dairesi Başkanlığı, http://www.deprem.gov.tr, Ankara, 2016.
  • [11] Cotton, F., Scherbaum, F., Bommer, J. J., Bungum, H., Criteria for Selecting and Adjusting Ground-Motion Models for Specific Target Regions: Application to Central Europe and Rock Sites, Journal of Seismology, 10, 137-156, 2006.
  • [12] Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., Fäh, D., On the Selection of Ground-Motion Prediction Equations for Seismic Hazard Analysis, Seismological Research Letters, 81, 783-793, 2010.
  • [13] Özbey, C., Sarı, A., Manuel, L., Erdik, M., Fahjan, Y., An empirical attenuation relationship for northwestern Turkey ground motion using a random effects approach, Soil Dynamics and Earthquake Engineering, 24, 2, 115-125, 2004.
  • [14] Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y., Attenuation relations of strong ground motion in Japan using site classification based on predominant period, Bulletin of the Seismological Society of America, 96, 3, 898-913, 2006.
  • [15] Cauzzi, C., E. Faccioli, Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records, Journal of Seismology, 12, 4, 453-475, 2008.
  • [16] Abrahamson, N. A., Silva, W. J., Summary of the Abrahamson & Silva NGA Ground Motion Relations, Earthquake Spectra, 24, 1, 67-97, 2008.
  • [17] Boore, D. M., Atkinson, G., Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01 s and 10.0 s, Earthquake Spectra, 24, 1, 99-138, 2008.
  • [18] Campbell, K. W., Bozorgnia, Y., NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthquake Spectra 24, 1, 139-171, 2008.
  • [19] Chiou, B. S.-J., Youngs, R. R., An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthquake Spectra, 24, 1, 173-215, 2008.
  • [20] Akkar, S., Sandıkkaya, M. A., Bommer, J. J., Empirical Ground-Motion Models for Point- and Extended- Source Crustal Earthquake Scenarios in Europe and the Middle East, Bulletin of Earthquake Engineering, 12, 359-387, 2014.
  • [21] Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., Augliera, P., PanEuropean ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset, Bulletin of Earthquake Engineering, 12, 391-430, 2014.
  • [22] Kale, Ö., Akkar, S., Ansari, A., Hamzehloo, H., A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV and 5%-damped response spectrum: Investigation of possible regional effects, Bulletin of the Seismological Society of America, 105, 2a, 963-980, 2015.
  • [23] Nash, J. E., Sutcliffe, J. V., River flow forecasting through conceptual models: Part I - A discussion of principles, Journal of Hydrology, 10, 282-290, 1970.
  • [24] Scherbaum, F., Cotton, F., Smit, P., On the Use of Response Spectral-Reference Data for the Selection and Ranking of Ground-Motion Models for Seismic-Hazard Analysis in Regions of Moderate Seismicity: The Case of Rock Motion, Bulletin of the Seismological Society of America, 94, 6, 2164-2185, 2004.
  • [25] Scherbaum, F., Delavaud, E., Riggelsen, C., Model selection in seismic hazard analysis: An information-theoretic perspective, Bulletin of the Seismological Society of America, 99, 6, 3234-3247, 2009.
  • [26] Kale, Ö., Akkar, S., A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPEs): The Euclidean Distance-Based Ranking (EDR) Method, Bulletin of the Seismological Society of America, 103, 2a, 1069-1084, 2013.
  • [27] Danciu, L., Kale, Ö., Akkar, S., The 2014 Earthquake Model of the Middle East: ground motion model and uncertainties, Bulletin of Earthquake Engineering, doi:10.1007/s10518-016-9989-1, 2016.
  • [28] Stewart, J. P., Douglas, J., Javanbarg, M Müberra ., Abrahamson, N. A., Bozorgnia, Y., Boore, D. M., Campbell, K. W., Delavaud, E., Erdik, M., Stafford, P. J., Selection of groundmotion prediction equations for the global earthquake model, Earthquake Spectra, 31, 1, 19-45, 2015.
  • [29] Kale, Ö., Akkar, S., A Ground-Motion Logic-Tree Scheme for Regional Seismic Hazard Studies, Earthquake Spectra, DOI 10.1193/051316EQS080M, 2017.
  • [30] Kale, Ö., Akkar, S., An Auxiliary Tool to Build Ground-Motion Logic-Tree Framework for Probabilistic Seismic Hazard Assessment, 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, İzmir, 2015.
  • [31] Sesetyan, K., Demircioğlu, M.B., Duman, T.Y., Çan, T., Tekin, S., Azak, T.E., Fercan, Ö.Z., A probabilistic seismic hazard assessment for the Turkish territory: part I: the area source model, Bulletin of Earthquake Engineering, doi:10.1007/s10518- 016-0005-6, 2016.
  • [32] Demircioğlu, M.B., Sesetyan, K., Duman, T., Çan T., Tekin, S., Ergintav, S., Source zonation model for the seismic hazard assessment of The Turkish Territory: part II: fault source and background seismicity model, Bulletin of Earthquake Engineering, DOI 10.1007/s10518-017-0130-x, 2017.
  • [33] Risk Engineering, EZ-FRISK-Software for Ground Motion Estimation, Risk Engineering Inc., Boulder, Colorado, 2015.
  • [34] Sandıkkaya, M. A., Akkar, S., Bard, P. Y., A Nonlinear Site Amplification Model for the Next Pan-European Ground-Motion Prediction Equations, Bulletin of the Seismological Society of America, 103, 1, 19-32, 2013.
  • [35] Akkar, S., Kale, Ö., Türkiye sismik tehlike haritasının güncellenmesi ve yeni deprem yönetmeliği, 8. Ulusal Deprem Mühendisliği Konferansı, İstanbul, 2015.
APA Kale Ö (2017). Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. , 8077 - 8103.
Chicago Kale Özkan Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. (2017): 8077 - 8103.
MLA Kale Özkan Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. , 2017, ss.8077 - 8103.
AMA Kale Ö Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. . 2017; 8077 - 8103.
Vancouver Kale Ö Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. . 2017; 8077 - 8103.
IEEE Kale Ö "Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma." , ss.8077 - 8103, 2017.
ISNAD Kale, Özkan. "Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma". (2017), 8077-8103.
APA Kale Ö (2017). Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. Teknik Dergi, 28(4), 8077 - 8103.
Chicago Kale Özkan Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. Teknik Dergi 28, no.4 (2017): 8077 - 8103.
MLA Kale Özkan Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. Teknik Dergi, vol.28, no.4, 2017, ss.8077 - 8103.
AMA Kale Ö Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. Teknik Dergi. 2017; 28(4): 8077 - 8103.
Vancouver Kale Ö Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma. Teknik Dergi. 2017; 28(4): 8077 - 8103.
IEEE Kale Ö "Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma." Teknik Dergi, 28, ss.8077 - 8103, 2017.
ISNAD Kale, Özkan. "Tasarım Spektrumu Parametreleri için Olasılıksal Sismik Tehlike Analizlerine Bağlı Bir Çalışma". Teknik Dergi 28/4 (2017), 8077-8103.