Yıl: 2017 Cilt: 25 Sayı: 4 Sayfa Aralığı: 3008 - 3023 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

k-NN-based classification of sleep apnea types using ECG

Öz:
Obstructive sleep apnea syndrome (OSAS) is a common sleep disorder that yields cardiovascular diseases, excessive daytime sleepiness, and poor quality of life if not treated. Classification of OSAS from electrocardiograms (ECGs) is a noninvasive method and much more affordable than traditional methods. This study proposes a pattern recognition system for automated apnea diagnosis based on heart rate variability (HRV) and ECG-derived respiratory signals. The k-nearest neighbor (k-NN) classifier has been used to develop the models for classifying the sleep apnea types. For comparison purposes, classification models based on multilayer perceptron, support vector machines, and C4.5 decision tree (C4.5 DT) have also been developed. The first database used for training contains 12 and the second used for testing contains 35 whole-night polysomnography recordings from real subjects. Wrapper-based feature selection, optimal parameter calculation, and 10-fold cross-validation were applied to the training dataset. The performance of the classifiers was evaluated by accuracy, sensitivity, and specificity metrics. The k-NN classifier yields higher classification accuracy, sensitivity, and specificity by successfully separating 100% of apnea recordings from normal recordings, and it also achieves a classification rate of 97% accuracy, 89% sensitivity, and 100% specificity of the subjects in the test database. Median, mean, absolute deviation, and interquartile range values of HRV were the most descriptive parameters. These results indicate significant potential for achieving basic estimates for OSAS patients.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • [1] Wolk R, Gami AS, Garcia-Touchard A, Somers VK. Sleep and cardiovascular disease. Curr Prob Cardiology 2005; 30: 625-662.
  • [2] Morgenthaler TI, Kagramanov V, Hanak V, Decker PA. Complex sleep apnea syndrome: is it a unique clinical syndrome? Sleep 2006; 29: 1203-1209.
  • [3] Yılmaz B, Asyalı MH, Arıkan E , Yetkin S, Ozgen F. Sleep stage and obstructive apneaic epoch classification using ¨ single-lead ECG. Biomed Eng Online 2010; 9: 1-14.
  • [4] Otero A, F´elix P, Barrob S, Zamarr´onc C. A structural knowledge-based proposal for the identification and characterization of apnoea episodes. Appl Soft Comput 2011; 12: 516-526.
  • [5] Mendez MO, Bianchi AM, Matteucci M, Cerutti S, Penzel T. Sleep apnea screening by autoregressive models from a single ECG lead. IEEE T Bio-Med Eng 2009; 56: 2838-2849.
  • [6] Guilleminault C, Connolly S, Winkler R, Melvin K, Tilkian A. Cyclical variation of the heart rate in sleep apnea syndrome. Lancet 1984; 21: 126-131.
  • [7] Timu¸s O, Kıyak E. Optimizing MLP classifier and ECG features for sleep apnea detection. Journal of Naval Science and Engineering 2015; 11: 1-18.
  • [8] Roche F, Gaspoz J M, Court-Fortune I, Minini P, Pichot V, Duverney D, Costes F, Lacour JR, Barthelemy JC. Screening of obstructive sleep apnea syndrome by heart rate variability analysis. Circulation 1999; 100: 1411-1415.
  • [9] Roche F, Pichot V, Sforza E, Court-Fortune I, Duverney D, Costes F, Garet M, Barthelemy JC. Predicting sleep apnea syndrome from heart period: a time-frequency wavelet analysis. Eur Respir J 2003; 22: 937-942.
  • [10] Isa S, Fanany MI, Jatmiko W, Murini A. Feature and model selection on automatic sleep apnea detection using ECG. In: 2010 International Conference on Computer Science and Information Systems; 20–23 Nov 2010; Bali, Indonesia. pp. 357-362.
  • [11] Chazal P, Heneghan C, Sheridan E, Reilly RB, Nolan P, O’Malley M. Automated processing of the single lead electrocardiogram for the detection of obstructive sleep apnea. IEEE T Bio-Med Eng 2003; 50: 686-696.
  • [12] Chazal P, Penzel T, Heneghan C. Automated detection of obstructive sleep apnoea at different time scales using the electrocardiogram. Physiol Meas 2004; 25: 967-983.
  • [13] Mendez MO, Ruini DD, Villantrieri OP, Matteucci M, Penzel T, Cerutti S, Bianchi AM. Detection of sleep apnea from surface ECG based on features extracted by an autoregressive model. In: IEEE 2007 29th International Engineering in Medicine and Biology Society Conference; 23–26 Aug 2007; Lyon, France. New York, NY, USA: IEEE. pp. 6105-6108.
  • [14] Khandoker AH, Palaniswami M, Karmakar M. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE T Inf Technol B 2009; 13: 37-48.
  • [15] Yıldız A, Akın M, Poyraz M. An expert system for automated recognition of patients with obstructive sleep apnea using electrocardiogram recordings. Expert Syst Appl 2011; 38: 12880-12890.
  • [16] Chen L, Zhang X, Song C. An automatic screening approach for obstructive sleep apnea diagnosis based on singlelead electrocardiogram. IEEE T Auto Sci Eng 2015; 12: 106-115.
  • [17] G¨ur¨uler H, S¸ahin M, Feriko˘glu A. Feature selection on single-lead ECG for obstructive sleep apnea diagnosis, Turk J Elec Eng & Comp Sci 2014; 22: 465-478.
  • [18] Babaeizadeh S, White DP, Pittman SD, Zhou SH. Automatic detection and quantification of sleep apnea using heart rate variability. J Electrocardiol 2010; 43: 535-541.
  • [19] Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events. Westchester, IL, USA: American Academy of Sleep Medicine, 2007.
  • [20] Devuyst S, Dutoit D, Kerkhofs M, The DREAMS database, University of MONS - TCTS Laboratory and Universit´e Libre de Bruxelles - CHU de Charleroi Sleep Laboratory.
  • [21] Shoelson B. A simple file reader for European Data Formatted (EDF-) files. Mathworks Matlab Center, 2013.
  • [22] Kranjec J, Beguˇs S, Gerˇsak G, Drnovˇsek J. Non-contact heart rate and heart rate variability measurements: a review. Biomed Signal Process Control 2014; 13: 102-112.
  • [23] Yakut O, Solak S, Bolat ED. Measuring ECG signal using e-health sensor platform. In: 2014 International Conference on Chemistry, Biomedical and Environment Engineering; 7–8 Oct 2014; Antalya, Turkey. pp. 71-75.
  • [24] Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE T Bio-Med Eng 1995; 42: 21-28.
  • [25] Martinez JP, Almeida R, Olmos S, Rocha AP, Laguna P. A wavelet based ECG delineator: evaluation on standard databases. IEEE T Bio-Med Eng 2004; 51: 570-581.
  • [26] Sahambi JS, Tandon SN, Bhatt RKP. Using wavelet transforms for ECG characterization. IEEE Eng Med Biol 1997; 16: 77-83.
  • [27] Saxena SC, Kumar V, Hamde ST. Feature extraction from ECG signals using wavelet transforms for disease diagnostics. Int J Syst Sci 2002; 33: 1073-1085.
  • [28] Ko¸cak O, Bayrak T, Erdamar A, Ozparlak L, Telatar Z, Ero˘gul O. Automated detection and classification of sleep ¨ apnea types using electrocardiogram (ECG) and electroencephalogram (EEG) features. Adv Electrocard-Clin Appl 2012: 211-230.
  • [29] Hamila R, Astola J, Alaya Cheikh F, Gabbouj M, Renfors M. Teager energy and the ambiguity function. IEEE T Signal Proces 1999; 47: 260-262.
  • [30] Kaiser JF. Some useful properties of teager’s energy operators. In: IEEE 1993 Acoustics, Speech And Signal Processing Conference; 27–30 April 1993; Minneapolis, MN, USA: IEEE. pp: 149-152.
  • [31] Malik M. Heart rate variability, standards of measurement, physiological interpretation, and clinical use, task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 1996; 17: 354-381.
  • [32] Laboratory 8. Classification and Vowel Recognition, The University of Michigan.
  • [33] Timu¸s O. Sleep respiration disorders diagnosis and classification utilizing soft computing algorithms. PhD, Kocaeli University, Kocaeli, Turkey, 2015.
  • [34] Penzel T, Moody GB, Mark RG, Goldberg AL, Peter JH. The apnea-ECG database. IEEE Comput Cardio 2000; 27: 255-258.
  • [35] Penzel T, Mcnames J, de Chazal P, Raymond B, Murray A, Moody G. Systematic comparison of different algorithms for apnea detection based on electrocardiogram recordings. Med Biol Eng Comput 2002; 40: 402-407.
APA TİMUŞ O, BOLAT DOĞRU E (2017). k-NN-based classification of sleep apnea types using ECG. , 3008 - 3023.
Chicago TİMUŞ Oğuzhan,BOLAT DOĞRU Emine k-NN-based classification of sleep apnea types using ECG. (2017): 3008 - 3023.
MLA TİMUŞ Oğuzhan,BOLAT DOĞRU Emine k-NN-based classification of sleep apnea types using ECG. , 2017, ss.3008 - 3023.
AMA TİMUŞ O,BOLAT DOĞRU E k-NN-based classification of sleep apnea types using ECG. . 2017; 3008 - 3023.
Vancouver TİMUŞ O,BOLAT DOĞRU E k-NN-based classification of sleep apnea types using ECG. . 2017; 3008 - 3023.
IEEE TİMUŞ O,BOLAT DOĞRU E "k-NN-based classification of sleep apnea types using ECG." , ss.3008 - 3023, 2017.
ISNAD TİMUŞ, Oğuzhan - BOLAT DOĞRU, Emine. "k-NN-based classification of sleep apnea types using ECG". (2017), 3008-3023.
APA TİMUŞ O, BOLAT DOĞRU E (2017). k-NN-based classification of sleep apnea types using ECG. Turkish Journal of Electrical Engineering and Computer Sciences, 25(4), 3008 - 3023.
Chicago TİMUŞ Oğuzhan,BOLAT DOĞRU Emine k-NN-based classification of sleep apnea types using ECG. Turkish Journal of Electrical Engineering and Computer Sciences 25, no.4 (2017): 3008 - 3023.
MLA TİMUŞ Oğuzhan,BOLAT DOĞRU Emine k-NN-based classification of sleep apnea types using ECG. Turkish Journal of Electrical Engineering and Computer Sciences, vol.25, no.4, 2017, ss.3008 - 3023.
AMA TİMUŞ O,BOLAT DOĞRU E k-NN-based classification of sleep apnea types using ECG. Turkish Journal of Electrical Engineering and Computer Sciences. 2017; 25(4): 3008 - 3023.
Vancouver TİMUŞ O,BOLAT DOĞRU E k-NN-based classification of sleep apnea types using ECG. Turkish Journal of Electrical Engineering and Computer Sciences. 2017; 25(4): 3008 - 3023.
IEEE TİMUŞ O,BOLAT DOĞRU E "k-NN-based classification of sleep apnea types using ECG." Turkish Journal of Electrical Engineering and Computer Sciences, 25, ss.3008 - 3023, 2017.
ISNAD TİMUŞ, Oğuzhan - BOLAT DOĞRU, Emine. "k-NN-based classification of sleep apnea types using ECG". Turkish Journal of Electrical Engineering and Computer Sciences 25/4 (2017), 3008-3023.