Yıl: 2013 Cilt: 38 Sayı: 2 Sayfa Aralığı: 154 - 162 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri

Öz:
Amaç: DNA promotör metilasyonu yoluyla gen ekspresyonunun epigenetik modülasyonu kanser hücrelerinde kemoterapiye karşı dirence neden olabilir. Bir demetile edici ajan olan desitabin (5-aza-2'-deoksisitidin) epigenetikle susturulmuş genleri yeniden aktive ederek standart kemoterapi rejimleri ile sinerjistik etki gösterebilir. Bu in vitro çalışmada, desitabin ve desitabinin antrasiklin-bazlı tedavi (FEC:5-Florourasil+Epirubisin+Siklofosfamid) ile kombinasyonunun meme kanseri hücrelerinde gen metilasyon seviyelerine etkisi araştırıldı.Metot: Desitabinin tek başına ve FEC ile kombinasyonunun farklı genlerin metilasyon seviyeleri üzerine etkisi insan MDA-MB-231 ve MCF-7 meme kanseri hücre soylarında araştırıldı. Desitabinin hücre canlılığı üzerine etkisi MTT canlılık testi ile çalışıldı. DAPK, TMS1, MGMT ve genel metilasyon göstergesi olan LINE-1 genlerinin metilasyon seviyelerini belirlemek için Methylight realtime PCR ve metilasyon spesifik PCR kullanıldı.Bulgular: LINE-1 metilasyon seviyesi desitabin ve FEC kombinasyon tedavisinden sonra her iki hücre soyunda da anlamlı olarak azaldı. MDA-MB-231 hücrelerinde, desitabin ve FEC kombinasyonunun TMS1 ve MGMT gen promotöründe metilasyon seviyelerinde azalmaya sebep olduğu gözlenirken aynı etki MCF-7 hücrelerinde gözlenmedi. Sonuç: Antrasiklin-bazlı kemoterapinin, desitabin gibi bir demetilasyon ajanı ile kombinasyonu metilasyon aracılığıyla apoptozisle ilişkili genlerin modülasyonu neden olarak kemoterapi sonucunu etkileyebilir. Daha da önemlisi, bu modülasyonun hücre tipine bağlı olarak gerçekleşebileceği görülmektedir
Anahtar Kelime:

Konular: Biyoloji Genel ve Dahili Tıp Hücre ve Doku Mühendisliği Hematoloji Biyoteknoloji ve Uygulamalı Mikrobiyoloji Genetik ve Kalıtım Hücre Biyolojisi

Changes in Gene Methylation Following Chemotherapy in Breast Cancer Cell Lines

Öz:
Objective: Epigenetic modulation of gene expression by DNA promoter methylation may contribute to acquired resistance to chemotherapy in cancer cells. Decitabine (5-aza-2’deoxycytidine), a demethylating agent, may act synergistically with standard chemotherapy regimens to activate epigenetically silenced genes. In the present in vitro study, it was investigated the effect of gene methylation level after treatment with decitabine and combination of decitabine with anthracycline-based therapeutics (5-fluorouracil plus epirubicine plus cyclophosphamide; FEC) on breast cancer cells (MCF-7 and MDA-MB-231). Methods: The effect of decitabine and its combination with FEC on different genes methylation level has been tested in MDA-MB-231 and MCF-7 human breast cancer cell lines. The effect of decitabine on the cell viability was assayed by MTT assay. Methylight real-time PCR and methylation specific PCR were carried out to determine the methylation status of certain genes: DAPK, TMS1, MGMT and the global methylation marker LINE-1.Results: The LINE-1 methylation status significantly decreased in both cell lines after treatment with the combination of decitabine with FEC. In MDA-MB-231 cells, methylation of the TMS1 and the MGMT gene promoter was significantly reduced by FEC plus decitabine while no effect was observed in MCF-7 cells. Conclusion: Anthracycline-based therapy regimens in combination with demethylating agents such as decitabine may affect chemotherapy outcome by modulation of apoptosisrelevant genes by methylation. More importantly, this modulation seems to be dependent on the cell type
Anahtar Kelime:

Konular: Biyoloji Genel ve Dahili Tıp Hücre ve Doku Mühendisliği Hematoloji Biyoteknoloji ve Uygulamalı Mikrobiyoloji Genetik ve Kalıtım Hücre Biyolojisi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1] Cheema B, Gaul CA, Lane K, Fiatarone Singh MA. Progressive resistance training in breast cancer: a systematic review of clinical trials. Breast Cancer Res Treat 2008; 109:9-26.
  • [2] EBCTCG. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365:1687-1717.
  • [3] Lewandowska J, Bartoszek A. DNA methylation in cancer development, diagnosis and therapy--multiple opportunities for genotoxic agents to act as methylome disruptors or remediators. Mutagenesis 2011; 26:475-487.
  • [4] Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16:6-21.
  • [5] Esteller M. Epigenetics in cancer. New Engl J Med 2008; 358:1148-1159.
  • [6] Dumitrescu RG. Epigenetic markers of early tumor development. Methods Mol Biol 2012; 863:3-14.
  • [7] Van De Voorde L, Speeckaert R, Van Gestel D, Bracke M, De Neve W, et al. DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res 2012; 751:304-325.
  • [8] Swift-Scanlan T, Vang R, Blackford A, Fackler MJ, Sukumar S. Methylated genes in breast cancer: associations with clinical and histopathological features in a familial breast cancer cohort. Cancer Biol Ther 2011; 11:853-865.
  • [9] Xiang TX, Yuan Y, Li LL, Wang ZH, Dan LY, et al. Aberrant promoter CpG methylation and its translational applications in breast cancer. Chin J Cancer. 2013; 32(1):12-20.
  • [10] Cho YH, Shen J, Gammon MD, Zhang YJ, Wang Q, et al. Prognostic significance of gene-specific promoter hypermethylation in breast cancer patients. Breast Cancer Res Treat 2012; 131:197- 205.
  • [11] Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R. Clinical Significance of Promoter Hypermethylation of ERβ and RARβ2 in Tumor and Serum DNA in Indian Breast Cancer Patients. Ann Surg Oncol 2012; 19:3107-3115.
  • [12] Sharma G, Mirza S, Parshad R, Srivastava A, Gupta SD, et al. Clinical significance of promoter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients. Life Sci 2010; 87:83-91.
  • [13] Liu J, Zhang Y, Xie YS, Wang FL, Zhang LJ, et al. 5-Aza-2’-deoxycytidine induces cytotoxicity in BGC-823 cells via DNA methyltransferase 1 and 3a independent of p53 status. Oncol Rep 2012; 28:545-552.
  • [14] Ateeq B, Unterberger A, Szyf M, Rabbani SA. Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 2008; 10:266-278.
  • [15] Polakova K, Bandzuchova E, Kuba D, Russ G. Demethylating agent 5-aza-2’-deoxycytidine activates HLA-G expression in human leukemia cell lines. Leuk Res 2009; 33:518-524.
  • [16] Singh KP, Treas J, Tyagi T, Gao W. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells. Cancer Lett 2012; 316:62-9.
  • [17] Deng T, Zhang Y. 5-Aza-2’-deoxycytidine reactivates expression of RUNX3 by deletion of DNA methyltransferases leading to caspase independent apoptosis in colorectal cancer Lovo cells. Biomed pharmacother 2009; 63:492-500.
  • [18] Chan AS, Tsui WY, Chen X, Chu KM, Chan TL, et al. Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. Oncogene 2003; 22:6946-6953.
  • [19] Song Y, Zhang C. Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression. Cancer Chemother Pharmacol 2009; 63:605-613.
  • [20] Steele N, Finn P, Brown R, Plumb JA. Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer 2009; 100:758- 763.
  • [21] Andreotti PE, Cree IA, Kurbacher CM, Hartmann DM, Linder D, et al. Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res 1995; 55:5276-5282.
  • [22] Kurbacher CM, Cree IA, Bruckner HW, Brenne U, Kurbacher JA, et al. Use of an ex vivo ATP luminescence assay to direct chemotherapy for recurrent ovarian cancer. Anti-cancer Drugs 1998; 9:51-57.
  • [23] Ulukaya E, Ozdikicioglu F, Oral AY, Demirci M. The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol In Vitro 2008; 22:232-239.
  • [24] Napieralski R, Ott K, Kremer M, Becker K, Boulesteix AL, et al. Methylation of tumor-related genes in neoadjuvant-treated gastric cancer: relation to therapy response and clinicopathologic and molecular features. Clin Cancer Res 2007; 13:5095-5102.
  • [25] Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, et al. Analysis of repetitive element DNA methylation by MethyLight. Nucl Acids Res 2005; 33:6823-6836.
  • [26] Friedrich MG, Weisenberger DJ, Cheng JC, Chandrasoma S, Siegmund KD, et al. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin Cancer Res 2004; 10:7457-7465.
  • [27] Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38:787-793.
  • [28] Brabender J, Usadel H, Metzger R, Schneider PM, Park J, et al. Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Clin Cancer Res 2003; 9:223-227.
  • [29] Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93:9821- 9826.
  • [30] Wethkamp N, Ramp U, Geddert H, Schulz WA, Florl AR, et al. Expression of death-associated protein kinase during tumour progression of human renal cell carcinomas:hypermethylationindependent mechanisms of inactivation. Eur J Cancer 2006; 42:264-274.
  • [31] Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 2000; 60:6236- 6242.
  • [32] Lewis CM, Cler LR, Bu DW, Zochbauer-Muller S, Milchgrub S, et al. Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clin Cancer Res 2005; 11:166-172.
  • [33] Euhus DM, Bu D, Milchgrub S, Xie XJ, Bian A, et al. DNA methylation in benign breast epithelium in relation to age and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2008; 17:1051-1059.
  • [34] Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat 2010; 120:581-592.
  • [35] Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 2004; 24:1270-1278.
  • [36] Xu J, Zhou JY, Tainsky MA, Wu GS. Evidence that tumor necrosis factor-related apoptosis-inducing ligand induction by 5-Aza- 2’-deoxycytidine sensitizes human breast cancer cells to adriamycin. Cancer Res 2007; 67:1203-1211.
  • [37] Zhang X, Yashiro M, Ohira M, Ren J, Hirakawa K. Synergic antiproliferative effect of DNA methyltransferase inhibitor in combination with anticancer drugs in gastric carcinoma. Cancer Sci 2006; 97:938-944.
  • [38] Ari F, Napieralski R, Ulukaya E, Dere E, Colling C, et al. Modulation of protein expression levels and DNA methylation status of breast cancer metastasis genes by anthracycline-based chemotherapy and the demethylating agent decitabine. Cell Biochem Funct 2011; 29:651-659.
  • [39] Yang AS, Estécio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004; 32:38.
  • [40] Kitkumthorn N, Tuangsintanakul T, Rattanatanyong P, Tiwawech D, Mutirangura A. LINE-1 methylation in the peripheral blood mononuclear cells of cancer patients. Clin Chim Acta 2012; 413:869-874.
  • [41] Jackson K, Yu MC, Arakawa K, Fiala E, Youn B, et al. DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther 2004; 3:1225-1231.
  • [42] Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 2006; 310:211-250.
  • [43] Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53:615-627.
  • [44] Pegg AE. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 1990; 50:6119-6129.
  • [45] Morandi L, Franceschi E, de Biase D, Marucci G, Tosoni A, et al. Promoter methylation analysis of O6-methylguanineDNA methyltransferase in glioblastoma: detection by locked nucleic acid based quantitative PCR using an imprinted gene (SNURF) as a reference. BMC Cancer 2010; 10:48.
  • [46] Hattermann K, Mehdorn HM, Mentlein R, Schultka S, HeldFeindt J. A methylation-specific and SYBR-green-based quantitative polymerase chain reaction technique for O6- methylguanine DNA methyltransferase promoter methylation analysis. Anal Biochem 2008; 377:62-71.
  • [47] Kreklau EL, Limp-Foster M, Liu N, Xu Y, Kelley MR, Erickson LC. A novel fluorometric oligonucleotide assay to measure O(6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase. Nucleic Acids Res 2001; 29:2558-2566.
  • [48] Mirza S, Sharma G, Pandya P, Ralhan R. Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol Cell Biochem 2010; 342:101-109.
  • [49] Yoo HJ, Byun HJ, Kim BR, Lee KH, Park SY, Rho SB. DAPk1 inhibits NF-κB activation through TNF-α and INF-γ- induced apoptosis. Cell Signal 2012; 24:1471-1477.
  • [50] Hupp TR. Death-associated protein kinase (DAPK) and signal transduction. FEBS J 2010; 277:47.
  • [51] McConnell BB, Vertino PM. TMS1/ASC: The cancer connection. Apoptosis 2004; 9:5-18.
  • [52] Tserga A, Michalopoulos NV, Levidou G, Korkolopoulou P, Zografos G, et al. Association of aberrant DNA methylation with clinicopathological features in breast cancer. Oncol Rep 2012; 27:1630-1638.
  • [53] Kato K, Iida S, Uetake H, Takagi Y, Yamashita T, et al. Methylated TMS1 and DAPK genes predict prognosis and response to chemotherapy in gastric cancer. Int J Cancer 2008; 122:603-608.
  • [54] Levine JJ, Stimson-Crider KM, Vertino PM. Effects of methylation on expression of TMS1/ASC in human breast cancer cells. Oncogene 2003; 22:3475-3488.
  • [55] Mirza S, Sharma G, Prasad CP, Parshad R, Srivastava A, et al. Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci 2007; 81:280-287.
  • [56] Lehmann U, Celikkaya G, Hasemeier B, Langer F, Kreipe H. Promoter hypermethylation of the death-associated protein kinase gene in breast cancer is associated with the invasive lobular subtype. Cancer Res 2002; 62:6634-6638.
  • [57] Levy D, Plu-Bureau G, Decroix Y, Hugol D, Rostene W, et al. Death-associated protein kinase loss of expression is a new marker for breast cancer prognosis. Clin Cancer Res 2004; 10:3124-3130.
APA Ari F, NAPİERALSKİ R, ULUKAYA E (2013). Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. , 154 - 162.
Chicago Ari Ferda,NAPİERALSKİ Rudolf,ULUKAYA Engin Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. (2013): 154 - 162.
MLA Ari Ferda,NAPİERALSKİ Rudolf,ULUKAYA Engin Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. , 2013, ss.154 - 162.
AMA Ari F,NAPİERALSKİ R,ULUKAYA E Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. . 2013; 154 - 162.
Vancouver Ari F,NAPİERALSKİ R,ULUKAYA E Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. . 2013; 154 - 162.
IEEE Ari F,NAPİERALSKİ R,ULUKAYA E "Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri." , ss.154 - 162, 2013.
ISNAD Ari, Ferda vd. "Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri". (2013), 154-162.
APA Ari F, NAPİERALSKİ R, ULUKAYA E (2013). Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. Türk Biyokimya Dergisi, 38(2), 154 - 162.
Chicago Ari Ferda,NAPİERALSKİ Rudolf,ULUKAYA Engin Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. Türk Biyokimya Dergisi 38, no.2 (2013): 154 - 162.
MLA Ari Ferda,NAPİERALSKİ Rudolf,ULUKAYA Engin Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. Türk Biyokimya Dergisi, vol.38, no.2, 2013, ss.154 - 162.
AMA Ari F,NAPİERALSKİ R,ULUKAYA E Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. Türk Biyokimya Dergisi. 2013; 38(2): 154 - 162.
Vancouver Ari F,NAPİERALSKİ R,ULUKAYA E Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri. Türk Biyokimya Dergisi. 2013; 38(2): 154 - 162.
IEEE Ari F,NAPİERALSKİ R,ULUKAYA E "Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri." Türk Biyokimya Dergisi, 38, ss.154 - 162, 2013.
ISNAD Ari, Ferda vd. "Meme Kanseri Hücre Soylarında Kemoterapiyi Takiben Oluşan Gen Metilasyon Değişiklikleri". Türk Biyokimya Dergisi 38/2 (2013), 154-162.