Yıl: 2017 Cilt: 38 Sayı: 4 ek Sayfa Aralığı: 86 - 97 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Optimization of Hnox Protein Production in Escherichia Coli

Öz:
Hemoproteinler canlılarda steroid biyosentezinden solunuma, sinyalizasyondan ilaç metabolizmasına kadar pek çok farklı biyolojik süreçlerde önemli görevler üstlenirler. Endüstride, hemoproteinler kolesterol düşürücü pravastatin, rahim ve rahim ağzı kanserlerinin hormonal tedavisinde kullanılan progesteron, alerji ve yangı'ya karşı kullanılan kortizon gibi ilaçların üretiminde kullanılmaktadır. Bunların yanı sıra hemoproteinlerin ilaç geliştirilmesi, biyolojik iyileştirme gibi alanlarda kullanılması da planlanmaktadır. Moleküler biyoloji ve protein tasarımı tekniklerinin gelişmesi ile bu proteinlerin endüstriyel uygulama alanları da genişleyecektir. Hemoproteinlerin bu alanlarda yaygın kullanımı karşısındaki en önemli engellerden biri Hem kofaktörüne bağlı bir şekilde yüksek miktarda hemoprotein üretilememesidir. Bu çalışmada Hem kofaktörüne bağlı bir şekilde üretilen hemoprotein miktarını en yüksek seviyeye getirebilecek koşullar araştırılmıştır. Bu çalışma kapsamında bakteride hemoprotein üretimini etkileyen en önemli üç etken olan indükleyici izopropil ?-D-l-tiyogalaktopiranosid (IPTG), ve Hem öncül molekülü ?-aminolevülinik asit (ALA), ve ekspresyon sıcaklığı incelenmiştir. Bu etkenlerin termofilik hemoprotein TtHNOK üretimine etkisi araştırılmıştır. Özellikle, ALA pahalı bir molekül olduğu için hemoproteinlerin üretiminde kullanılan ALA miktarının optimizasyonu önemlidir. Bu çalışma sonucunda Escherichia coli bakterisinde Hem kofaktörüne bağlı TtHNOK proteinin üretimi için en uygun koşulların düşük sıcaklık, 0,5 mM IPTG ve 1 mM ALA olduğu gösterilmiştir. Bu çalışmada çıkan sonuçlar Hem kofaktörüne bağlı hemoprotein üretiminde ALA konsantrasyonun ve ekspresyon sıcaklığının önemli olduğunu göstermiştir
Anahtar Kelime:

HNOK Proteinlerinin Escherichia Coli’de Üretiminin Optimizasyonu

Öz:
Hemeproteins carry a variety of different functions in organisms ranging from steroid biosynthesis to respiration, signaling to drug metabolism. In industry, hemeproteins are used for production of drugs such as: pravastatin for lowering cholesterol, progesterone for hormonal treatment of cancers of uterus and cervix, and cortisone used against allergy and inflammation. Hemeproteins can also be used in drug development and biological remediation. The industrial applications of hemeproteins will expand with development of molecular biology and protein design techniques. One of the obstacles to the widespread use of hemeproteins is difficulties in production of high levels of heme bound protein. This study aims to maximize the amount of heme cofactor bound hemeprotein produced. Here, three important factors affecting hemeprotein production in bacteria are examined: induction by isopropyl β-D-1-thiogalactopyranoside (IPTG), δ-aminolevulinic acid (ALA), precursor for heme biosynthesis, and expression temperature. Effects of these factors on production of thermophilic hemeprotein TtHNOX are investigated. Since ALA is an expensive molecule, optimization of the amount of ALA used is important. The most suitable conditions to produce TtHNOX is at low temperature, 0.5 mM IPTG and 1 mM ALA. This study concludes that ALA concentration and expression temperature are important in production of heme bound hemeproteins
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Lu Y., Berry S.M., Pfister T.D. Engineering novel metalloproteins: Design of metalbinding sites into native protein scaffolds. Chem Rev 2001; 101: 3047-80.
  • [2] Van Beilen J.B., Duetz W.A., Schmid A., Witholt B. Practical issues in the application of oxygenases Trends Biotechnol 2003; 21: 170-7.
  • [3] Hogg J.A., Steroids, the steroid community, and Upjohn in perspective: A profile of innovation. Steroids 1992; 57: 593-616.
  • [4] Peterson D.H., Murray H.C. Microbiological oxygenation of steroids at carbon 11. J Am Chem Soc 1952; 74: 1871- 2.
  • [5] Kumar S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 2010; 6: 115-31.
  • [6] Caswell J.M., O’Neill M., Taylor SJC., Moody TS. Engineering and application of P450 monooxygenases in pharmaceutical and metabolite synthesis. Curr Opin Chem Biol 2013; 17: 271-5.
  • [7] Renault H., Bassard J.E., Hamberger B., Werck-Reichhart D. Cytochrome P450- mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol 2014; 19C: 27-34.
  • [8] Prabhulkar S., Tian H., Wang X., Zhu J.J., Li C.Z. Engineered Proteins: Redox Properties and Their Applications. Antioxid Redox Signal 2012; 17: 1796-1822.
  • [9] Eggins B.R., Chemical Sensors and Biosensors. West Sussex, England: John Wiley & Sons, Ltd, 2002.
  • [10] Koder R.L., Anderson J.L.R., Solomon L.A., Reddy K.S., Moser C.C., Dutton P.L. Design and engineering of an O2 transport protein. Nature 2009; 458: 305-9
  • [11] Springer B.A., Sligar S.G. High-level expression of sperm whale myoglobin in Escherichia coli. Proc Natl Acad Sci USA 1987; 84: 8961-5.
  • [12] Chudaev M.V., Usanov S.A. Expression of functionally active cytochrome b5 in Escherichia coli: isolation, purification, and use of the immobilized recombinant heme protein for affinity chromatography of electron-transfer proteins. Biochemistry (Mosc) 1997; 62: 401-11.
  • [13] Choby J.E., Skaar E.P. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428: 3408-3428.
  • [14] Harnastai I.N., Gilep A.A., Usanov S.A. The development of an efficient system for heterologous expression of cytochrome P450s in Escherichia coli using hemA gene co-expression. Protein Expr Purif 2006; 46: 47-55.
  • [15] Harris W.F., Burkhalter R.S., Lin W., Timkovich R. Enhancement of Bacterial Porphyrin Biosynthesis by Exogenous Aminolevulinic Acid and Isomer Specificity of the Products. Bioorg Chem 993; 21: 209-20.
  • [16] Iyer L.M., Anantharaman V., Aravind L. Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics 2003; 4: 5.
  • [17] Karow D.S., Pan D., Tran R., Pellicena P., Presley A., Mathies R.A., Marletta M.A. Spectroscopic characterization of the soluble guanylate cyclase-like heme domains from Vibrio cholerae and Thermoanaerobacter tengcongensis. Biochemistry 2004; 43: 10203-11.
  • [18] Plate L., Marletta M.A. Nitric oxidesensing H-NOX proteins govern bacterial communal behavior. Trends Biochem Sci 2013; 38: 566-575.
  • [19] Boon E.M., Marletta M.A. Ligand specificity of H-NOX domains: From sGC to bacterial NO sensors J Inorg Biochem 2005; 99: 892-902.
  • [20] Xue Y., Xu Y., Liu Y., Ma Y., Zhou P. Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int J Syst Evol Microbiol 2001; 51: 1335-41.
  • [21] Olea C., Kuriyan J., Marletta M.A. Modulating heme redox potential through protein-induced porphyrin distortion. J Am Chem Soc 2010; 132: 12794-5.
  • [22] Weinert E.E., Phillips-Piro C.M., Marletta M.A. Porphyrin π-stacking in a heme protein scaffold tunes gas ligand affinity. J Inorg Biochem 2013; 127: 7-12.
  • [23] Azarov I., Wang L., Rose JJ., Xu Q., Huang X.N., Belanger A., Wang Y., Guo L., Liu C., Ucer K.B., McTiernan C.F, ODonnell C.P., Shiva S., Tejero J., Kim-Shapiro D.B., Gladwin M.T. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning. Sci Transl Med 2016; 8: 368ra173-368ra173.
  • [24] Winter M.B., Klemm P.J., Phillips-Piro C.M., Raymond K.N., Marletta M.A. Porphyrin-Substituted H-NOX Proteins as High-Relaxivity MRI Contrast Agents. Inorg Chem 2013; 52: 2277-2279.
  • [25] Nierth A., Marletta M.A. Direct mesoalkynylation of metalloporphyrins through gold catalysis for hemoprotein engineering. Angew Chemie Int Ed 2014; 53: 2611-4.
  • [26] Weinert E.E., Plate L., Whited C.A., Olea C., Marletta M.A. Determinants of ligand affinity and heme reactivity in H-NOX domains. Angew Chemie Int Ed 2010; 49: 720-723.
  • [27] Zhao Y., Marletta M.A. Localization of the heme binding region in soluble guanylate cyclase. Biochemistry 1997; 36: 15959-64.
  • [28] Green M.R., Sambrook J. Molecular Cloning A Laboratory Manual. 4th ed Cold Spring Harbor laboratory Press, 2014.
  • [29] Ayato Y., Matsuda N. Evaluation of biofuel cells with hemoglobin as cathodic electrocatalysts for hydrogen peroxide reduction on bare indium-tin-oxide electrodes. Energies 2014; 7: 1-12.
  • [30] Stone K., Ahmed S. Advances in Engineered Hemoproteins that Promote Biocatalysis. Inorganics 2016; 4: 12.
  • [31] Hernandez K.E., Renata H., Lewis RD., Kan S.B.J., Zhang C., Forte J., Rozzell D., McIntosh J.A., Arnold F.H. Highly Stereoselective Biocatalytic Synthesis of Key Cyclopropane Intermediate to Ticagrelor. ACS Catal 2016; 6: 7810–3
  • [32] Kafi A.K.M., Lee D.Y., Park S.H., Kwon Y.S. Electrochemical properties of hemeprotein in lauric acid films and its application as a biosensor. NanoBiotechnology 2006; 2: 67-70.
  • [33] Hofbauer S., Schaffner I., Furtmüller P.G., Obinger C. Chlorite dismutases - a heme enzyme family for use in bioremediation and generation of molecular oxygen. Biotechnol J 2014; 9: 461-473.
  • [34] Shaik T.B., Pal B. Fine Tuning Soluble Expression of a Heme Protein. J. Proteins Proteomics 2015; 6: 255-60.
  • [35] Jung Y., Kwak J., Lee Y. High-level production of heme-containing holoproteins in Escherichia coli. Appl Microbiol Biotechnol 2001; 55: 187-91.
  • [36] Hayashi T., Takimura T., Aoyama Y., Hitomi Y., Suzuki A., Ogoshi H. Structure and reactivity of reconstituted myoglobins: interaction between protein and polar side chain of chemically modified hemin. Inorganica Chim Acta 1998; 275-276: 159- 67.
  • [37] Hargrove M.S., Krzywda S., Wilkinson A.J., Dou Y., Ikeda-Saito M., Olson J.S. Stability of myoglobin: a model for the folding of heme proteins. Biochemistry 1994; 33: 11767-75.
  • [38] Correia M.A. Its Heme and Apoprotein Moieties in Synthesis, assembly, repair and disposal. Drug Metab Rev 2011; 43: 1-26.
APA SURMELI N (2017). Optimization of Hnox Protein Production in Escherichia Coli. , 86 - 97.
Chicago SURMELI Nur Basak Optimization of Hnox Protein Production in Escherichia Coli. (2017): 86 - 97.
MLA SURMELI Nur Basak Optimization of Hnox Protein Production in Escherichia Coli. , 2017, ss.86 - 97.
AMA SURMELI N Optimization of Hnox Protein Production in Escherichia Coli. . 2017; 86 - 97.
Vancouver SURMELI N Optimization of Hnox Protein Production in Escherichia Coli. . 2017; 86 - 97.
IEEE SURMELI N "Optimization of Hnox Protein Production in Escherichia Coli." , ss.86 - 97, 2017.
ISNAD SURMELI, Nur Basak. "Optimization of Hnox Protein Production in Escherichia Coli". (2017), 86-97.
APA SURMELI N (2017). Optimization of Hnox Protein Production in Escherichia Coli. Cumhuriyet Science Journal, 38(4 ek), 86 - 97.
Chicago SURMELI Nur Basak Optimization of Hnox Protein Production in Escherichia Coli. Cumhuriyet Science Journal 38, no.4 ek (2017): 86 - 97.
MLA SURMELI Nur Basak Optimization of Hnox Protein Production in Escherichia Coli. Cumhuriyet Science Journal, vol.38, no.4 ek, 2017, ss.86 - 97.
AMA SURMELI N Optimization of Hnox Protein Production in Escherichia Coli. Cumhuriyet Science Journal. 2017; 38(4 ek): 86 - 97.
Vancouver SURMELI N Optimization of Hnox Protein Production in Escherichia Coli. Cumhuriyet Science Journal. 2017; 38(4 ek): 86 - 97.
IEEE SURMELI N "Optimization of Hnox Protein Production in Escherichia Coli." Cumhuriyet Science Journal, 38, ss.86 - 97, 2017.
ISNAD SURMELI, Nur Basak. "Optimization of Hnox Protein Production in Escherichia Coli". Cumhuriyet Science Journal 38/4 ek (2017), 86-97.