Yıl: 2017 Cilt: 31 Sayı: 2 Sayfa Aralığı: 99 - 103 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Epidermal Büyüme Faktörünün Nöroprotektif Etkileri

Öz:
Epidermal büyüme faktörü (EGF), hücrelerin bölünmesini, farklılaşmasını, yaşamasını, çoğalmasını, büyümesini ve göçünü uyaran, organizmadaki pek çok fizyolojik ve patolojik süreçte görev alan protein yapıda bir büyüme faktörüdür. Epidermal büyüme faktörü, biyolojik etkilerini bir transmembran protein olan EGF reseptörü (EGFR) aracılığı ile göstermektedir. Epidermal büyüme faktörü reseptörü, akciğerde, midede, duodenumda, pankreasta, böbrekte, hipofiz bezinde, tiroid bezinde, meme bezinde, yumurtalıkta, uterusta, plasentada, korneada ve gliya hücrelerinde bulunmaktadır. Epidermal büyüme faktörü, EGFR'ye bağlanarak, hücre çoğalması ve sağ kalımında rol oynayan mitojen-aktiveli protein kinaz (MAPK), hücre dışı sinyalle düzenlenen kinaz (ERK) 1/2 ve fosfotidil inozitol 3-kinaz (PI3K)-Akt sinyalizasyon yolaklarını aktive etmektedir. Epidermal büyüme faktörü reseptörü, astrositlerin çoğalmasında, farklılaşmasında ve postmitotik nöronların sağ kalımında rol oynamaktadır. Epidermal büyüme faktörü reseptörünün oligodendrosit gelişiminde de önemli bir role sahip olduğu bilinmektedir. Akut omurilik yaralanmasında EGF uygulaması kan-omurilik bariyeri geçirgenliğindeki bozulmayı fosfotidil inozitol 3-kinaz /Akt/ Ras- ilişkili C3 botulinum toksin substrat 1 (PI3K/Akt/Rac1) yolağı ile hafifletmekte ve lokomotor aktiviteyi artırmaktadır. Yeni doğan beyin hasarı modelinde burun içi heparin-bağlı EGF tedavisi, progenitör hücrelerden yeni oligodendrositlerin oluşumunu artırmakta ve fonksiyonel iyileşmeyi uyarmaktadır. Plazma EGF düzeyinin, Parkinson ve Alzheimer hastalarında bilişsel gerilemenin biyobelirteçi olduğu ileri sürülmektedir. Epidermal büyüme faktörü, multiple skleroz hastalarında remiyelinasyon için anahtar bir molekül olarak değerlendirilmektedir. Sinir sistemi hastalıklarının tedavisinde EGF uygulaması yeni bir yaklaşım olarak görülmektedir. Bu derlemede, EGF'nin nöroprotektif etkileri hakkında bilgi sunulması amaçlanmıştır.
Anahtar Kelime:

Konular: Cerrahi

Neuroprotective Effects of Epidermal Growth Factor

Öz:
Epidermal growth factor (EGF) is a growth factor in protein structure that stimulating division, differentiation, survival, proliferation, growth and migration of the cells and is involved in many physiological and pathological processes of the organism. EGF exerts its biological effects through EGF receptor (EGFR) which is a transmembrane protein. Epidermal growth factor receptors are located on the cell surface of many tissues that include lung, stomach, duodenum, pancreas, kidney, pituitary gland, thyroid gland, mammary gland, ovary, uterus, placenta, cornea and glia. EGF activates the mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1/2 and phosphatidylinositol 3 kinase (PI3K)-Akt signaling pathways stimulating cell proliferation and survival through binding to EGFR. EGFR plays a role in proliferation and differentiation of astrocytes and survival of postmitotic neurons. EGFR is also known to have an important role in oligodendrocyte development. In acute spinal cord injury, EGF treatment alleviates the deterioration in the blood-spinal cord barrier permeability via phosphatidylinositol 3 kinase/Akt/Ras-releated C3 botulinum toxin substrate 1 (PI3K/Akt/Rac1) pathway and increases locomotor activity. Intranasal heparin-bound EGF treatment increases the formation of new oligodendrocytes from progenitor cells and induces functional recovery in newborn brain injury model. Plasma EGF levels is suggested that a biological marker of cognitive decline in patients with Parkinson disease and Alzheimer disease. EGF is evaluated as a key molecule for remyelination in patient with multiple sclerosis. EGF treatment is considered as a novel approach to the treatment of nervous system diseases. In this review, it has been aimed to present a knowledge about neuroprotective effect of EGF.
Anahtar Kelime:

Konular: Cerrahi
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Morrison RS, Kornblum HI, Leslie FM, Bradshaw RA. Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor. Science 1987; 238: 72- 75.
  • 2. Casper D, Mytilineou C, Blum M. EGF enhances the survival of dopamine neurons in rat embryonic mesencephalon primary cell culture. J Neurosci Res 1991; 30: 372-381.
  • 3. Ferrari G, Toffano G, Skaper SD. Epidermal growth factor exerts neuronotrophic effects on dopaminergic and GABAergic CNS neurons: Comparison with basic fibroblast growth factor. J Neurosci Res 1991; 30: 493- 497.
  • 4. Craig CG, Tropepe V, Morshead CM, et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 1996; 16: 2649-2658.
  • 5. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36: 1021-1034.
  • 6. O'Keeffe GC, Tyers P, Aarsland D, et al. Dopamineinduced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci USA 2009; 106: 8754-8759.
  • 7. Calamandrei G, Alleva E. Epidermal growth factor has both growth-promoting and growth-inhibiting effects on physical and neurobehavioral development of neonatal mice. Brain Res 1989; 477: 1-6.
  • 8. Futamura T, Kakita A, Tohmi M, et al. Neonatal perturbation of neurotrophic signaling results in abnormal sensorimotor gating and social interaction in adults: Implication for epidermal growth factor in cognitive development. Mol Psychiatry 2003; 8: 19-29.
  • 9. Tohmi M, Tsuda N, Mizuno M, et al. Distinct influences of neonatal epidermal growth factor challenge on adult neurobehavioral traits in four mouse strains. Behav Genet 2005; 35: 615-629.
  • 10. Scalabrino G, Nicolini G, Buccellato FR, et al. Epidermal growth factor as a local mediator of the neurotrophic action of vitamin B (12) (cobalamin) in the rat central nervous system. FASEB J 1999; 13: 2083-2090.
  • 11. Gómez-Pinilla F, Knauer DJ, Nieto-Sampedro M. Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization. Brain Res 1988; 438: 385-390.
  • 12. Birecree E, King LE Jr, Nanney LB. Epidermal growth factor and its receptor in the developing human nervous system. Brain Res Dev Brain Res 1991; 60: 145-154.
  • 13. Kornblum HI, Hussain R, Wiesen J, et al. Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J Neurosci Res 1998; 53: 697-717.
  • 14. Caric D, Raphael H, Viti J, et al. EGFRs mediate chemotactic migration in the developing telencephalon. Development 2001; 128: 4203-4216.
  • 15. Wagner B, Natarajan A, Grünaug S, et al. Neuronal survival depends on EGFR signaling in cortical but not midbrain astrocytes. EMBO J 2006; 25: 752-762.
  • 16. Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003; 284: 31-53.
  • 17. Anonim. "Epidermal growth factors and cancer". http://www.abcam.com/index.html?pageconfig=resource& rid=10723/21.11.2017.
  • 18. Tang Y, Tong X, Li Y, et al. JAK2/STAT3 pathway is involved in the protective effects of epidermal growth factor receptor activation against cerebral ischemia/reperfusion injury in rats. Neurosci Lett 2018; 662: 219-226.
  • 19. Zhong M, Song WL, Xu YC, Ye Y, Feng LY. Paeoniflorin ameliorates ischemic neuronal damage in vitro via adenosine A1 receptor-mediated transactivation of epidermal growth factor receptor. Acta Pharmacol Sin 2015; 36: 298-310.
  • 20. Zheng B, Ye L, Zhou Y, et al. Epidermal growth factor attenuates blood-spinal cord barrier disruption via PI3K/Akt/Rac1 pathway after acute spinal cord injury. J Cell Mol Med 2016; 20: 1062-1075.
  • 21. Yamada M, Ikeuchi T, Hatanaka H. The neurotrophic action and signalling of epidermal growth factor. Prog Neurobiol 1997; 51: 19-37.
  • 22. Birecree E, Whetsell WO Jr, Stoscheck C, King LE Jr, Nanney LB. Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer's disease. J Neuropathol Exp Neurol 1988; 47: 549-560.
  • 23. Knapp PE, Adams MH. Epidermal growth factor promotes oligodendrocyte process formation and regrowth after injury. Exp Cell Res 2004; 296: 135-144.
  • 24. Sibilia M, Steinbach JP, Stingl L, Aguzzi A, Wagner EF. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J 1998; 17: 719-731.
  • 25. Abe K, Saito H. Protective effect of epidermal growth factor on glutamate neurotoxicity in cultured cerebellar neurons. Neurosci Res 1992; 14: 117-123.
  • 26. Casper D, Blum M. Epidermal growth factor and basic fibroblast growth factor protect dopaminergic neurons from glutamate toxicity in culture. J Neurochem 1995; 65: 1016-1026.
  • 27. Peng H, Wen TC, Tanaka J, et al. Epidermal growth factor protects neuronal cells in vivo and in vitro against transient forebrain ischemia- and free radical-induced injuries. J Cereb Blood Flow Metab 1998; 18: 349-360.
  • 28. Teramoto T, Qiu J, Plumier JC, Moskowitz MA. EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J Clin Invest 2003; 111: 1125-1132.
  • 29. Ninomiya M, Yamashita T, Araki N, Okano H, Sawamoto K. Enhanced neurogenesis in the ischemic striatum following EGF-induced expansion of transit-amplifying cells in the subventricular zone. Neurosci Lett 2006; 403: 63-67.
  • 30. Sun D, Bullock MR, Altememi N, et al. The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma 2010; 27: 923-938.
  • 31. Jimenez HMC, Tator CH, Shoichet MS. Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Exp Neurol 2005; 194: 106-119.
  • 32. Kojima A, Tator CH. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J Neurotrauma 2002; 19: 223-238.
  • 33. Yoon S, Choi MH, Chang MS, Baik JH. Wnt5a-dopamine D2 receptor interactions regulate dopamine neuron development via extracellular signal-regulated kinase (ERK) activation. J Biol Chem 2011; 286: 15641-15651.
  • 34. Iwakura Y, Piao YS, Mizuno M, et al. Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson's disease and its model: Neurotrophic implication in nigrostriatal neurons. J Neurochem 2005; 93: 974-983.
  • 35. Inoue H, Lin L, Lee X, et al. Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson's disease models. Proc Natl Acad Sci USA 2007; 104: 14430- 14435.
  • 36. Pezzoli G, Zecchinelli A, Ricciardi S, et al. Intraventricular infusion of epidermal growth factor restores dopaminergic pathway in hemiparkinsonian rats. Mov Disord 1991; 6: 281-287.
  • 37. Jiang QW, Wang C, Zhou Y, et al. Plasma epidermal growth factor decreased in the early stage of Parkinson's disease. Aging Dis 2015; 6: 168-173.
  • 38. Chen-Plotkin AS, Hu WT, Siderowf A, et al. Plasma epidermal growth factor levels predict cognitive decline in Parkinson disease. Ann Neurol 2011; 69: 655-663.
  • 39. Pellecchia MT, Santangelo G, Picillo M, et al. Serum epidermal growth factor predicts cognitive functions in early, drug-naive Parkinson's disease patients. J Neurol 2013; 260: 438-444.
  • 40. Lim NS, Swanson CR, Cherng HR, et al; PARS Investigators; Alzheimer's Disease Neuroimaging Initiative, Trojanowski JQ, Chen-Plotkin AS. Plasma EGF and cognitive decline in Parkinson's disease and Alzheimer's disease. Ann Clin Transl Neurol 2016; 3: 346- 355.
  • 41. Hochstrasser T, Ehrlich D, Marksteiner J, et al. Matrix metalloproteinase-2 and epidermal growth factor are decreased in platelets of Alzheimer patients. Curr Alzheimer Res 2012; 9: 982-989.
  • 42. Plagg B, Marksteiner J, Kniewallner KM, Humpel C. Platelet dysfunction in hypercholesterolemia mice, two Alzheimer's disease mouse models and in human patients with Alzheimer's disease. Biogerontology 2015; 16: 543- 558.
  • 43. Marksteiner J, Kemmler G, Weiss EM, et al. Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2011; 32: 539-540.
  • 44. Björkqvist M, Ohlsson M, Minthon L, Hansson O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer's disease. PLoS One 2012; 7: e29868.
  • 45. Biella G, Franceschi M, De Rino F, et al. Multiplex assessment of a panel of 16 serum molecules for the differential diagnosis of Alzheimer's disease. Am J Neurodegener Dis 2013; 2: 40-45.
  • 46. Scalabrino G, Galimberti D, Mutti E, et al. Loss of epidermal growth factor regulation by cobalamin in multiple sclerosis. Brain Res 2010; 1333: 64-71.
  • 47. Scalabrino G, Veber D, Tredici G. Relationships between cobalamin, epidermal growth factor, and normal prions in the myelin maintenance of central nervous system. Int J Biochem Cell Biol 2014; 55: 232-241.
  • 48. Scalabrino G, Veber D, De Giuseppe R, Roncaroli F. Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord. Neuroscience 2015; 298: 293-301.
  • 49. Scalabrino G, Tredici G, Buccellato FR, Manfridi A. Further evidence for the involvement of epidermal growth factor in the signaling pathway of vitamin B12 (cobalamin) in the rat central nervous system. J Neuropathol Exp Neurol 2000; 59: 808-814.
  • 50. Scalabrino G, Carpo M, Bamonti F, et al. High tumor necrosis factor-alpha [corrected] levels in cerebrospinal fluid of cobalamin-deficient patients. Ann Neurol 2004; 56: 886-890.
  • 51. Levy YA, Fainberg KM, et al. High and dysregulated secretion of epidermal growth factor from immune cells of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2013; 257: 82-89.
  • 52. Levy YA, Fainberg KM, Karni A. Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis via Induction of Neurogenesis and Oligodendrogenesis. Mult Scler Int 2014; 2014: 926134.
APA Yarim G, YARIM M, TORUNOĞLU E, Kazak F (2017). Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. , 99 - 103.
Chicago Yarim Gul Fatma,YARIM MURAT,TORUNOĞLU Emine İncilay,Kazak Filiz Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. (2017): 99 - 103.
MLA Yarim Gul Fatma,YARIM MURAT,TORUNOĞLU Emine İncilay,Kazak Filiz Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. , 2017, ss.99 - 103.
AMA Yarim G,YARIM M,TORUNOĞLU E,Kazak F Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. . 2017; 99 - 103.
Vancouver Yarim G,YARIM M,TORUNOĞLU E,Kazak F Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. . 2017; 99 - 103.
IEEE Yarim G,YARIM M,TORUNOĞLU E,Kazak F "Epidermal Büyüme Faktörünün Nöroprotektif Etkileri." , ss.99 - 103, 2017.
ISNAD Yarim, Gul Fatma vd. "Epidermal Büyüme Faktörünün Nöroprotektif Etkileri". (2017), 99-103.
APA Yarim G, YARIM M, TORUNOĞLU E, Kazak F (2017). Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, 31(2), 99 - 103.
Chicago Yarim Gul Fatma,YARIM MURAT,TORUNOĞLU Emine İncilay,Kazak Filiz Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi 31, no.2 (2017): 99 - 103.
MLA Yarim Gul Fatma,YARIM MURAT,TORUNOĞLU Emine İncilay,Kazak Filiz Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, vol.31, no.2, 2017, ss.99 - 103.
AMA Yarim G,YARIM M,TORUNOĞLU E,Kazak F Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi. 2017; 31(2): 99 - 103.
Vancouver Yarim G,YARIM M,TORUNOĞLU E,Kazak F Epidermal Büyüme Faktörünün Nöroprotektif Etkileri. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi. 2017; 31(2): 99 - 103.
IEEE Yarim G,YARIM M,TORUNOĞLU E,Kazak F "Epidermal Büyüme Faktörünün Nöroprotektif Etkileri." Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, 31, ss.99 - 103, 2017.
ISNAD Yarim, Gul Fatma vd. "Epidermal Büyüme Faktörünün Nöroprotektif Etkileri". Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi 31/2 (2017), 99-103.