Yıl: 2018 Cilt: 2 Sayı: 1 Sayfa Aralığı: 5 - 12 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Prematüre Retinopatisinde Etyopatogenez

Öz:
Prematüre retinopatisi düşük doğum haftası ve doğum ağırlığı ile ilişkili, potansiyel olarak körlük ile sonuçlanabilen bir hastalıktır. Hiperoksinin neden olduğu büyüme faktörlerinin baskılanması ve maternal-fetal etkşileşimin erken dönemde kesintiye uğraması retinanın normal damar gelişim sürecinde aksamaya yol açar. Bu aksamayı takiben ortaya çıkan metabolik ihtiyaçlardaki artış ve yetersiz vaskülarizasyon, retina dekolmanına yol açabilen patolojik neovaskülarizasyon sürecini başlatan hipoksiye yol açar. Vasküler endotelyal büyüme faktörü (VEGF) hem fizyolojik hem de patolojik damar gelişiminde anahtar bir role sahiptir. Hayvan modelleri aracılığı ile oluşturulan 'oksijenin indüklediği retinopati (OIR)' tablosu ile yapılan deneysel araştırmalar doğrultusunda okisjen seviyeleri, oksidatif stres, inflamasyon gibi dış faktörlerin, sitokinler, sinyal yolakları ve bunlara ait reseptörlerin de prematüre retinopatisi patogenezi ile bağlantılı olduğu gözlenmiştir
Anahtar Kelime:

Konular: Cerrahi

Etiopathogenesis in Retinopathy of Prematurity

Öz:
Retinopathy of prematurity (ROP) is a potentially blinding diasease associated with low gestational age and birth weight. Supression of growth factors due to hyperoxia and loss of maternal-fetal interaction cause impaired develpoment of retinal vascularization. Subsequently, an increase in metabolic demands and inadequate vascularization lead to hypoxia that triggers pathologic neovascularization process, which may lead to detachment in retinal tissue. Vascular endothelial growth factor (VEGF) has a key role both physiologic and pathologic vascularization. Based upon in animal models of oxygen induced retinopthy (OIR) exogenous factors like oxygen levels, oxidative stress, inflammation and cytokines, several signaling pathways and their receptors have been linked to pathogenesis of ROP, as well
Anahtar Kelime:

Konular: Cerrahi
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Bibliyografik
  • 1. Özcan PY, Çıtırık M.[Current Classification, Screening, examination methods and treatment in Retinopathy of prematurity]. Ret-Vit 2016;24(4):271- 279.
  • 2. Terry TL. Extreme prematurity and fibroblastic overgrowth of persistent vascular sheath behind each crystalline lens: (1) preliminary report. Am J Ophthalmol 1942;25(1):203–4.
  • 3. Smith LE, Hard AL, Hellström A. The biology of retinopathy of Prematurity: How Knowledge of Pathogenesis Guides Treatment. Clin Perinatol 2013;40(2):201-214.
  • 4. Ashton N, Ward B, Serpell G. Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br J Ophthalmol. 1954; 38(7):397–432.
  • 5. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000; 105(2):295–310.
  • 6. Chen ML, Guo L, Smith LE, Dammann CE, Dammann O. High or low oxygen saturation and severe retinopathy of prematurity: a meta-analysis. Pediatrics. 2010; 125(6):1483–92.
  • 7. Chan-Ling T, McLeod DS, Hughes S, et al. Astrocyte-endothelial cell relationships during human retinal vascular development. Invest Ophthalmol Vis Sci 2004;45:2020–32.
  • 8. McLeod DS, Hasegawa T, Prow T, et al. The initial fetal human retinal vasculature develops by vasculogenesis. Dev Dyn 2006;235:3336–47.
  • 9. Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci. 2000; 41(5):1217–28.
  • 10. Bai Y, Ma JX, Guo J, et al. Müller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol 2009;219:446–54.
  • 11. Jiang Y, Wang H, Culp D, et al. Targeting Muller cellederived VEGF164 to reduce intravitreal neovascularization in the rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2014;55:824–31.
  • 12. Rivera JC, Sapieha P, Joyal JS, et al. Understanding retinop- athy of prematurity: update on pathogenesis. Neonatology 2011;100:343–53.
  • 13. Hartnett ME. Pathophysiology and Mechanisms of Severe Retinopathy of Prematurity. Ophthalmology. 2015;122:200-210.
  • 14. Smith LE, Wesolowski E, McLellan A, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994;35: 101–11.
  • 15. Hartnett ME, Penn JS. Mechanisms and Management of Retinopathy of Prematurity. N Engl J Med. 2012;367(26):2515-2526.
  • 16. Penn JS, Henry MM, Tolman BL. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res 1994;36:724–31.
  • 17. Early Treatment for Retinopathy of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: results of the Early Treatment for Retinopathy of Prematurity randomized trial. Arch Ophthalmol 2003;121: 1684–94.
  • 18. Lutty GA, McLeod DS, Bhutto I, Wiegand SJ. Effect of VEGF Trap on normal retinal vascular development and oxygen- induced retinopathy in the dog. Invest Ophthalmol Vis Sci 2011;52:4039–47.
  • 19. Pehmen Yasin Özcan, Mehmet çıtırk, Şehnaz Özçalışkan.[Current Epidemiology, Pathophysiology and risk Factors in retinopathy of prematurity]. Ret-Vit 2016;24(4):263-270 .
  • 20. Madan A, Penn JS. Animal models of oxygen-induced retinopathy. Frontiers in bioscience: a journal and virtual library. 2003; 8:d1030–43.
  • 21. Gupta MP, Chan RVP, Anzures R, Ostmo S, Jonas K, et al. Practice patterns in retinopathy of prematurity treatment for disease milder than recommended by guidelines. Am J ophthalmol 2016;163:1-10.
  • 22. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular per- meability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11(2):109–119.
  • 23. Lukiw WJ, Ottlecz A, Lambrou G, Grueninger M, Finley J, Thompson HW, Bazan NG. Coordinate activation of HIF-1 and NF-kappaB DNA binding and COX-2 and VEGF expression in retinal cells by hypoxia. Invest Ophthalmol Vis Sci 2003;44(10):4163-4170.
  • 24. Budd S, Byfield G, Martiniuk D, Geisen P, Hartnett ME. Reduction in endothelial tip cell filopodia corresponds to reduced intravitreous but not intraretinal vascularization in a model of ROP. Exp Eye Res. 2009; 89(5):718–27.
  • 25. Geisen P, Peterson LJ, Martiniuk D, Uppal A, Saito Y, Hartnett ME. Neutralizing antibody to VEGF reduces intravitreous neovascularization and does not interfere with vascularization of avascular retina in a rat model of retinopathy of prematurity. Mol Vis. 2008;14(11):345–57.
  • 26. Hartnett ME. Studies on the pathogenesis of avascular retina and neovascularization into the vitreous in peripheral severe retinopathy of prematurity (an American Ophthal- mological Society thesis). Trans Am Ophthalmol Soc 2010;108:96–119.
  • 27. Liu CH, Wang Z, Sun Y, Chen J. Animal models of ocular angiogenesis: from development to pathologies. FASEB J 2107;31:000-000.
  • 28. McColm JR, Geisen P, Hartnett ME. VEGF isoforms and their expression after a single episode of hypoxia or repeated fluctuations between hyperoxia and hypoxia: relevance to clinical ROP. Mol Vis[serial online] 2004;10:512–20.
  • 29. Hartnett ME. Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol. 2017 ;62(3):257-276.
  • 30. Hartnett ME, Capone A Jr. Advances in diagnosis, clinical care, research, and treatment in retinopathy of prematurity. Eye Brain. 2016;8:27-29.
  • 31. Hartnett ME, Martiniuk D, Byfield G, Geisen P, Zeng G, Bautch VL. Neutralizing VEGF decreases tortuosity and alters endothelial cell division orien- tation in arterioles and veins in a rat model of ROP: relevance to plus disease. Invest Ophthalmol Vis Sci 2008;49(7):3107–14.
  • 32. Wang H, Byfield G, Jiang Y, Smith GW, McCloskey M, Hartnett ME. VEGF-mediated STAT3 activation inhibits retinal vascularization by down-regulating erythropoietin expression. Am J Pathol. 2012; 180(3):1243–53.
  • 33. Ueki Y, Wang J, Chollangi S, Ash JD. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J Neurochem. 2008; 105(3):784–96.
  • 34. Yang Z, Wang H, Jiang Y, Hartnett ME. VEGFA activates erythropoietin receptor and enhances VEGFR2- mediated pathological angiogenesis. Am J Pathol 2014;184(4):1230–9.
  • 35. Aher SM, Ohlsson A. Early versus late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2006; (3):CD004865.
  • 36. Powell-Braxton L, Hollingshead P, Warburton C, et al. IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993; 7(12B):2609–2617.
  • 37. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23(6):824–854.
  • 38. Smith LE, Hard AL, Hellström A. The biology of retinopathy of Prematurity: How Knowledge of Pathogenesis Guides Treatment. Clin Perinatol 2013;40(2):201-214.
  • 39. Hellstrom A, Perruzzi C, Ju M, et al. Low IGF-I suppresses VEGF- survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA. 2001;98(10):5804–5808.
  • 40. Stahl A, Chen J, Sapieha P, Seaward MR, Krah NM, Dennison RJ, et al. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am J Pathol. 2010; 177(6):2715–23.
  • 41. Smith LE, Kopchick JJ, Chen W, et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science. 1997;276(5319):1706– 1709.
  • 42. Smith LE, Shen W, Perruzzi C, Soker S, Kinose F, Xu X, et al. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med. 1999; 5 (12):1390–5.
  • 43. Lofqvist C, Chen J, Connor KM, Smith AC, Aderman CM, Liu N, et al. IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth. Proc Natl Acad Sci U S A. 2007; 104(25):10589–94
  • 44. Lofqvist C, Engström E, Sigurdsson J, Hard AL, Niklasson A. Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit. Pediatrics. 2006; 117(6):1930- 1938.
  • 45. Hansen-Pupp I, Hövel H, Hellström A, Hellström-Westas L, Löfqvist C. Postnatal decrease in circulating insulin-like growth factor-I and low brain volumes in very preterm infants. J Clin Endocrinol Metab. 2011; 96(4):1129– 35.
  • 46. L.C. Shaw, M.B. Grant, Insulin like growth factor-1 and insulin-like growth factor binding proteins: their possible roles in both maintaining normal retinal vascular function and in promoting retinal pathology, Rev. Endocr. Metab. Disord. 2004;5:199–207.
  • 47. Hirota K, Keino H, Inoue M, Ishida H and Hirakata A. Comparisons of microRNA expres- sion pro les in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253: 335-342.
  • 48. Carbajo-Lozoya J, Lutz S, Feng Y, Kroll J, Hammes HP and Wieland T. Angiotensin II modulates VEGF-driven angiogenesis by op- posing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium. Cell Signal 2012; 24: 1261-1269.
  • 49. Nadal JA, Scicli GM, Carbini LA and Scicli AG. Angiotensin II stimulates migration of retinal microvascular pericytes: involvement of TGF- beta and PDGF-BB. Am J Physiol Heart Circ Physiol 2002; 282: H739-748.
  • 50. Chen XE, Ouyang LJ, Yin ZQ, Xia YY, Chen XR, et al. Effects of microRNA-29a on retinopathy of prematurity by targeting AGT in a mouse model. Am J Transl Res 2017;9(2):791-801.
  • 51. Wilkinson-Berka JL, Agrotis A and Deliyanti D. The retinal renin-angiotensin system: roles of angiotensin II and aldosterone. Peptides 2012; 36: 142-150.
  • 52. Ha YM, Nam JO and Kang YJ. Pitavastatin regu- lates Ang II induced proliferation and migration via IGFBP-5 in VSMC. Korean J Physiol Pharmacol 2015; 19: 499-506.
  • 53. Zhao R, Qian L, Jiang L. miRNA-dependent cross-talk between VEGF and Ang-2 in hypoxia-induced microvascular dysfunction. Biochem Biophys Res Commun. 2014;452(3):428–435.
  • 54. Yuan LH, Chen XL, Di Y, Liu ML. CCR7/p-ERK1/2/VEGF signaling promotes retinal neovascularization in a mouse model of oxygen-induced retinopathy. Int J Ophthalmol 2017;10(6):862-869.
  • 55. Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov. 2013; 12(4):265–286.
  • 56. Chen JF, Zhang S, Zhou R, Lin Z, Cai X, et al. Adenosine receptors and caffeine in retinopathy of prematurity. Mol Aspects Med 2017;55:118-125.
  • 57. Lutty GA, McLeod DS. Retinal vascular development and oxygen-indu-ced retinopathy: a role for adenosine. Prog Retin Eye Res. 2003; 22(1):95–111.
  • 58. Liu XL, Zhou R, Pan QQ, Jia XL, Gao WN, Wu J, Lin J, Chen JF. Genetic inactivation of the adenosine A2A receptor attenuates pathologic but not developmental angiogenesis in the mouse retina. Invest Ophthalmol Vis Sci. 2010; 51(12):6625–6632
  • 59. Afzal A, Shaw LC, Caballero S, Spoerri PE, Lewin AS, Zeng D, Belardinelli L, Grant MB. Reduction in preretinal neovascularization by ribozymes that cleave the A2B adenosine receptor mRNA. Circ Res. 2003; 93(6):500–506.
  • 60. Ali YF, El-Morshedy S, Imam AA, Ismai N, Elsayed RM, et al. The role of serum apelin in retinopathy of prematurity. Clinical Ophthalmology 2017:11;387-392.
  • 61. GeigerK,MuendleinA,StarkN,etal.Hypoxiainducesapelinexpression in human adipocytes. Horm Metab Res. 2011;43:380–385.
  • 62. ZhangY,JiangYR,LuQ,YinH,TaoY.Apelininepiretinal brovas- cular membranes of patients with retinopathy of prematurity and the changes after intravitreal bevacizumab. Retina. 2013;33:613–620.
  • 63. Joyal JS, Sitaras N, Binet F, Rivera JC, Stahl A, Zaniolo K, et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood. 2011; 117:6024-35 28.
  • 64. Rivera JC, Sitaras N, Noueihed B, Hamel D, Madaan A, Zhou T, et al. Microglia and interleukin-1beta in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arterioscler Thromb Vasc Biol 2013; 33:1881-91
  • 65. Rivera JC, Madaan A, Zhou T, Chemtob S. Review of the mechanism and therapeutic avenues for retinal and choroidal vascular dysfunctions in retinopathy of prematurity. Acta Paediatr. 2106;105(12):1421-1433.
  • 66. Tian XF, Xia XB, Xiong SQ, Jiang J, Liu D, Liu JL. Netrin-1 overexpression in oxygen-induced retinopathy correlates with breakdown of the blood-retina barrier and retinal neovascularization. Ophthalmologica 2011; 226:37-44.
  • 67. Binet F, Mawambo G, Sitaras N, Tetreault N, Lapalme E, Favret S, et al. Neuronal ER stress impedes myeloid-cell-induced vascular regeneration through IRE1alpha degradation of netrin-1. Cell Metab 2013; 17:353-71.
  • 68. Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, et al. Norrin, frizzled- 4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 2009; 139:285-98
  • 69. Shastry BS. Genetic susceptibility to advanced retinopathy of prematurity (ROP). J Biomed Sci 2010; 17:69
  • 70. Ohlmann A, Seitz R, Braunger B, Seitz D, Bosl MR, Tamm ER. Norrin promotes vascular regrowth after oxygen-induced retinal vessel loss and suppresses retinopathy in mice. J Neurosci 2010; 30:183-93
  • 71. Zeilbeck LF, Muller BB, Leopold SA, Senturk B, Langmann T, Tamm ER, et al. Norrin mediates angiogenic properties via the induction of insulin-like growth factor-1. Exp Eye Res 2015; 145:317-26
  • 72. Seitz R, Hackl S, Seibuchner T, Tamm ER, Ohlmann A. Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/ beta-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells. J Neurosci 2010; 30:5998-6010
  • 73. Gu X, El-Remessy AB, Brooks SE, Al-Shabrawey M, Tsai NT, Caldwell RB. Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. Am J Physiol Cell Physiol 2003; 285:C546-5
  • 74. Wang H, Zhang SX, Hartnett ME. Signaling pathways trig- gered by oxidative stress that mediate features of severe reti- nopathy of prematurity. JAMA Ophthalmol. 2013;131:80–5.
  • 75. Wang H, Yang Z, Jiang Y, Hartnett ME. Endothelial NADPH oxidase 4 mediates vascular endothelial growth factor receptor 2-induced intravitreal neovascularization in a rat model of retinopathy of prematurity. Mol Vis. 2014;20: 231–41.
  • 76. Beauchamp MH, Martinez-Bermudez AK, Gobeil F, Jr., Marrache AM, Hou X, Speranza G, et al. Role of thromboxane in retinal microvascular degeneration in oxygen-induced retinopathy. J Appl Physiol (1985) 2001; 90:2279- 88.
  • 77. Brault S, Gobeil F, Jr., Fortier A, Honore JC, Joyal JS, Sapieha PS, et al. Lysophosphatidic acid induces endothelial cell death by modulating the redox environment. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1174-83.
  • 78. Anderson MF, Ramasamy B, Lythgoe DT, Clark D. Choroidal thickness in regressed retinopathy of prematurity. Eye (Lond) 2014; 28:1461-8.
  • 79. Wu WC, Shih CP, Wang NK, Lien R, Chen YP, Chao AN, et al. Choroidal thickness in patients with a history of retinopathy of prematurity. JAMA Ophthalmol 2013; 131:1451-8.
  • 80. Moreno TA, O’Connell RV, Chiu SJ, Farsiu S, Cabrera MT, Maldonado RS, et al. Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT. Invest Ophthalmol Vis Sci 2013; 54:4140-7.
  • 81. Shao Z, Dorfman AL, Seshadri S, Djavari M, Kermorvant-Duchemin E, Sennlaub F, et al. Choroidal involution is a key component of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2011; 52:6238-48.
  • 82. Ozcan PY, Dogan F, Sonmez K, Con R, Dokumacı DS, Seyhanli ES. Assessment of orbital blood flow velocities in retinopathy of prematurity. Int Ophthalmol. 2017;37(4):795-799.
  • 83. Zhou TE, Rivera JC, Bhosle VK, Lahaie I, Shao Z, Tahiri H, et al. Choroidal involution is associated with a progressive degeneration of the outer retinal function in a model of retinopathy of prematurity: Early role for Interleukin-1β. Am J Pathol. 2016;186(12):3100-3116.
APA ÖZCAN P (2018). Prematüre Retinopatisinde Etyopatogenez. , 5 - 12.
Chicago ÖZCAN Pehmen Yasin Prematüre Retinopatisinde Etyopatogenez. (2018): 5 - 12.
MLA ÖZCAN Pehmen Yasin Prematüre Retinopatisinde Etyopatogenez. , 2018, ss.5 - 12.
AMA ÖZCAN P Prematüre Retinopatisinde Etyopatogenez. . 2018; 5 - 12.
Vancouver ÖZCAN P Prematüre Retinopatisinde Etyopatogenez. . 2018; 5 - 12.
IEEE ÖZCAN P "Prematüre Retinopatisinde Etyopatogenez." , ss.5 - 12, 2018.
ISNAD ÖZCAN, Pehmen Yasin. "Prematüre Retinopatisinde Etyopatogenez". (2018), 5-12.
APA ÖZCAN P (2018). Prematüre Retinopatisinde Etyopatogenez. Güncel Retina Dergisi, 2(1), 5 - 12.
Chicago ÖZCAN Pehmen Yasin Prematüre Retinopatisinde Etyopatogenez. Güncel Retina Dergisi 2, no.1 (2018): 5 - 12.
MLA ÖZCAN Pehmen Yasin Prematüre Retinopatisinde Etyopatogenez. Güncel Retina Dergisi, vol.2, no.1, 2018, ss.5 - 12.
AMA ÖZCAN P Prematüre Retinopatisinde Etyopatogenez. Güncel Retina Dergisi. 2018; 2(1): 5 - 12.
Vancouver ÖZCAN P Prematüre Retinopatisinde Etyopatogenez. Güncel Retina Dergisi. 2018; 2(1): 5 - 12.
IEEE ÖZCAN P "Prematüre Retinopatisinde Etyopatogenez." Güncel Retina Dergisi, 2, ss.5 - 12, 2018.
ISNAD ÖZCAN, Pehmen Yasin. "Prematüre Retinopatisinde Etyopatogenez". Güncel Retina Dergisi 2/1 (2018), 5-12.