Yıl: 2017 Cilt: 10 Sayı: 4 Sayfa Aralığı: 417 - 434 Metin Dili: Türkçe

Bütünleşik SWARA - COPRAS Yöntemi Kullanarak Bulut Depolama Hizmet Sağlayıcılarının Değerlendirilmesi

Öz:
-- Teknolojinin hızlı gelişimi ile birlikte DVD, USB ve hatta harici disklerin yerini bulut depolama servisleri almaya başlamıştır. Bulut depolama; sunucular tarafından ağ üzerinde sanal biçimde oluşturulan havuzlarda veri depolanmasıdır. Bulut depolamada kullanıcılar internet üzerinde kendilerine ait bir depolama alanına sahip olmakta ve dosyalarını bu alanda saklayabilmektedirler. Bu çalışmanın amacı; büyük çaplı veri merkezlerini işleten ve depolama için alan sunan çeşitli bulut depolama hizmet sağlayıcıları arasından en iyisinin seçilmesidir. Seçim konusunda literatürde karşılaşılan çeşitli kriterler söz konusudur. Kriterler eşit öneme sahip olmadığından, kriterlerin önem düzeyleri SWARA yöntemi ile belirlenmiştir. Oluşturulan kriterler ışığında COPRAS yöntemi ile en iyi bulut depolama hizmet sağlayıcısının seçimi yapılmıştır. En yüksek önem derecesine sahip kriterin "Güvenlik" kriteri olduğu ve en düşük öneme sahip kriterin ise "Müşteri Hizmetleri" olduğu sonucuna ulaşılmıştır. En iyi bulut depolama hizmet sağlayıcısının Google Drive olduğu bilgisine ulaşılırken; diğer bulut depolama hizmet sağlayıcılarından Yandex.Disk ikinci, iCloud Drive üçüncü, Dropbox dördüncü, Box beşinci ve OneDrive altıncı sırada yer almaktadır
Anahtar Kelime:

Evaluation of Cloud Storage Service Providers Using Integrated SWARA - COPRAS Method

Öz:
— Along with the rapid development of technology; DVD, USB and even external drives have begun to receive cloud storage services. In cloud storage; data is stored in virtual pools which are created by the servers on the network. In cloud storage, users have their own storage space on the internet and can store their files in this area. The purpose of this study is to choose the best cloud storage service provider among various types of them that operate large data centers and provide space for storage. There are various criteria in the literature about selection. As the criteria do not have equal qualifications, the importance levels of the criteria are determined by the SWARA method. In the light of criteria created, the best cloud storage service provider has been chosen with the COPRAS method. While "Safety" criterion has been attended to the highest priority, "Customer Support Services" has the lowest priority. Google Drive is found as the best performing cloud service provider. Yandex.Disk, iCloud Drive, Dropbox, Box and OneDrive follow Google Drive cloud service provider respectively
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] K. Ferguson-Boucher, “Cloud Computing: A Records and Information Management Perspective,” IEEE Secur. Priv. Mag., vol. 9, no. 6, pp. 63–66, 2011.
  • [2] G. Garrison, K. Sanghyun, and R. L. Wakefield, “Success Factors for Deploying Cloud Computing,” Commun. ACM, vol. 55, no. 9, pp. 62–68, 2012.
  • [3] P. Pocatilu, C. Boja, and C. Ciurea, “Syncing Mobile Applications with Cloud Storage Services,” Inform. Econ., vol. 17, no. 2/2013, pp. 96–108, 2013.
  • [4] O. Ali, J. Soar, J. Yong, and X. Tao, “Factors to be considered in cloud computing adoption,” Web Intell., vol. 14, no. 4, pp. 309–323, 2016.
  • [5] C.-R. Choi and H.-Y. Jeong, “Quality evaluation and best service choice for cloud computing based on user preference and weights of attributes using the analytic network process,” Electron. Commer. Res., vol. 14, no. 3, pp. 245–270, 2014.
  • [6] F. Xhafa and V. Loia, “Guest Editorial for Special Section on Advanced Techniques for Efficient and Reliable Cloud Storage,” IEEE Trans. Comput., vol. 65, no. 8, pp. 2346–2347, 2016.
  • [7] C.-S. Wang and S.-L. Lin, “Why are People Willing to Pay for Cloud Service,” in IEEE/ACIS 15th International Conference on, 2016, pp. 1–6.
  • [8] D. Burda and F. Teuteberg, “The role of trust and risk perceptions in cloud archiving - Results from an empirical study,” J. High Technol. Manag. Res., vol. 25, no. 2, pp. 172–187, 2014.
  • [9] P. G. Neumann, “Risks and Myths of Cloud Computing and Cloud Storage,” Commun. ACM, vol. 57, no. 10, pp. 25–27, 2014.
  • [10]J. K. Adjei, “Explaining the role of trust in cloud service acquisition,” Explain. role Trust cloud Comput. Serv., vol. 17, no. 1, pp. 54–67, 2014.
  • [11]F. Zafar, A. Khan, S. U. R. Malik, M. Ahmed, A. Anjum, M. I. Khan, N. Javed, M. Alam, and F. Jamil, “A survey of cloud computing data integrity schemes: Design challenges, taxonomy and future trends,” Comput. Secur., vol. 65, pp. 29–49, 2017.
  • [12]D. Quick and K. K. R. Choo, “Dropbox analysis: Data remnants on user machines,” Digit. Investig., vol. 10, no. 1, pp. 3–18, 2013.
  • [13]S. Savaş, N. Topaloğlu, and O. Güler, “Türkiye‟deki Kullanıcıların Bazı Alan Adları Üzerine Tercihlerinin Belirlenmesi: Bir Anket Uygulaması,” Bilişim Teknol. Derg., vol. 8, no. 2, p. 51, 2015.
  • [14]“Number of registered Dropbox users from April 2011 to March 2016 (in millions),” 2016. .
  • [16]A. Gutierrez, E. Boukrami, and R. Lumsden, “Technological, Organisational and Environmental factors influencing managers‟ decision to adopt cloud computing in the UK,” J. Enterp. Inf. Manag., vol. 28, no. 6, pp. 1–19, 2015.
  • [17]R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” J. Syst. Softw., vol. 118, pp. 64–84, 2016.
  • [18]R. Vidhyalakshmi and V. Kumar, “Determinants of cloud computing adoption by SMEs,” Int. J. Bus. Inf. Syst., vol. 22, no. May, pp. 375–395, 2016.
  • [19]J. Shin, M. Jo, J. Lee, and D. Lee, “Strategic Management of Cloud Computing Services: Focusing on Consumer Adoption Behavior,” IEEE Trans. Eng. Manag., vol. 61, no. 3, pp. 419–427, 2014.
  • [20]S. Le, H. Dong, F. K. Hussain, O. K. Hussain, J. Ma, and Y. Zhang, “Multicriteria decision making with fuzziness and criteria interdependence in cloud service selection,” in IEEE International Conference on Fuzzy Systems, 2014, no. July 2014, pp. 1929–1936.
  • [21]J. Papathanasiou, V. Kostoglou, and D. Petkos, “A comparative analysis of cloud computing services using multicriteria decisio analysis methodologies,” Int. J. Inf. Decis. Sci., vol. 7, no. 1, pp. 51–70, 2015.
  • [22]D. Burda and F. Teuteberg, “Exploring consumer preferences in cloud archiving – a student‟s perspective,” Behav. Inf. Technol., vol. 35, no. 2, pp. 89–105, 2016.
  • [23]S. H. Zolfani and J. Saparauskas, “New Application of SWARA Method in Prioritizing Sustainability Assessment Indicators of Energy System,” Eng. Econ., vol. 24, no. 5, pp. 408–414, 2013.
  • [24]V. Keršuliene, E. K. Zavadskas, and Z. Turskis, “Selection of Rational Dispute Resolution Method by Applying New Step-Wise Weight Assessment Ratio Analysis (Swara),” J. Bus. Econ. Manag., vol. 11, no. 2, pp. 243–258, 2010.
  • [25]V. Keršulienė and Z. Turskis, “Integrated Fuzzy Multiple Criteria Decision Making Model for Architect Selection,” Technol. Econ. Dev. Econ., vol. 17, no. 4, pp. 645–666, 2011.
  • [26]S. H. Zolfani, M. H. Esfahani, M. Bitarafan, E. K. Zavadskas, and S. L. Arefi, “Developing A New Hybrid MCDM Method for Selection of The Optimal Alternative of Mechanical Longitudinal Ventilation of Tunnel Pollutants During Automobile Accidents,” Transport, vol. 28, no. 1, pp. 89–96, 2013.
  • [27]M. Alimardani, S. H. Zolfani, M. H. Aghdaie, and J. Tamošaitienė, “A Novel Hybrid SWARA and VIKOR Methodology for Supplier Selection in an Agile Environment,” Technol. Econ. Dev. Econ., vol. 19, no. 3, pp. 533–548, 2013.
  • [28]S. H. Zolfani, E. K. Zavadskas, and Z. Turskis, “Design of Products with Both International and Local Perspectives Based on Yin-Yang Balance Theory and SWARA Method,” Econ. Res., vol. 26, no. 2, pp. 153–166, 2013.
  • [29]M. H. Aghdaie, S. H. Zolfani, and E. K. Zavadskas, “Decision Making in Machine Tool Selection : An Integrated Approach with SWARA and COPRAS-G Methods,” Eng. Econ., vol. 24, no. 1, pp. 5–17, 2013.
  • [30]S. H. Zolfani a nd S. S. A. Banihashemi, “Personnel Selection Based on a Novel Model of Game Theory and MCDM Approaches,” in 8th International Scientific Conference “Business and Management 2014,” 2014, pp. 191–198.
  • [31]M. Vafaeipour, S. H. Zolfani, M. H. M. Varzandeh, A. Derakhti, and M. E. Keshavarz, “Assessment of Regions Priority for Implementation of Solar Projects in Iran: New Application of a Hybrid Multi-Criteria Decision Making Approach,” Energy Convers. Manag., vol. 86, no. 2014, pp. 653–663, 2014.
  • [32]M. H. Aghdaie, S. H. Zolfani, and E. K. Zavadskas, “Synergies of Data Mining and Multiple Attribute Decision Making,” Procedia - Soc. Behav. Sci., vol. 110, no. 2014, pp. 767–776, 2014.
  • [33]M. H. Aghdaie, S. H. Zolfani, and E. K. Zavadskas, “Sales Branches Performance Evaluation: A Multiple Attribute Decision Making Approach,” in 8th International Scientific Conference “Business and Management 2014,” 2014, pp. 1–7.
  • [34]A. Dehnavi, I. N. Aghdam, B. Pradhan, and M. H. Morshed Varzandeh, “A New Hybrid Model Using Step-Wise Weight Assessment Ratio Analysis (SWARA) Technique and Adaptive Neuro-Fuzzy Inference System (ANFIS) for Tegional Landslide Hazard Assessment in Iran,” Catena, vol. 135, no. 2015, pp. 122– 148, 2015.
  • [35]M. R. G. Nezhad, S. H. Zolfani, F. Moztarzadeh, E. K. Zavadskas, and M. Bahrami, “Planning the priority of high tech industries based on SWARA-WASPAS methodology: The case of the nanotechnology industry in Iran,” Econ. Res. Istraz., vol. 28, no. 1, pp. 1111–1137, 2015.
  • [36]D. Karabasevic, D. Stanujkic, S. Urosevic, and M. Maksimovic, “Selection of Candidates in the Mining Industry Based on the Application of the SWARA and the MULTIMOORA Methods,” Acta Montan. Slovaca, vol. 20, no. 2, pp. 116–124, 2015.
  • [37]D. Stanujkic, D. Karabasevic, and E. K. Zavadskas, “A Framework for the Selection of a Packaging Design Based on the SWARA Method,” Eng. Econ., vol. 26, no. 2, pp. 181–187, 2015.
  • [38]D. Karabasevic, D. Stanujkic, S. Urosevic, and M. Maksimovic, “An approach to personnel selection based on Swara and Waspas methods,” J. Econ. Manag. Informatics, vol. 7, no. 1, pp. 1–11, 2016.
  • [39]D. Karabasevic, H. Paunkovic, and D. Stanujkic, “Ranking of companies according to the indicators of corporate social responsibility based on SWARA and ARAS methods,” Serbian J. Manag., vol. 11, no. 1, pp. 43–53, 2016.
  • [40]A. Tuş Işık and E. Aytaç Adalı, “A new integrated decision making approach based on SWARA and OCRA methods for the hotel selection problem,” Int. J. Adv. Oper. Manag., vol. 8, no. 2, pp. 140–151, 2016.
  • [41]S. Shukla, P. K. Mishra, R. Jain, and H. C. Yadav, “An integrated decision making approach for ERP system selection using SWARA and PROMETHEE method,” Int. J. Intell. Enterp., vol. 3, no. 2, pp. 120–147, 2016.
  • [42]M. Yazdani, E. K. Zavadskas, J. Ignatius, and M. D. Abad, “Sensitivity analysis in MADM methods: Application of material selection,” Eng. Econ., vol. 27, no. 4, pp. 382–391, 2016.
  • [43]E. Gavcar, E. Coşkun, T. Paksoy, A. Eleren, H. Sulak, M. Özdemir, T. Aytemiz, E. Özceylan, and R. Keskin, Yöneylem Araştırması. İstanbul: Lisans Yayıncılık, 2011.
  • [44]M. Tekin, Sayısal Yöntemler. Konya: Selçuk Üniversitesi İİBF, 2008. [45]M. Timor, Yöneylem Araştırması. İstanbul: Türkmen Kitabevi, 2010.
  • [46]İ. Erdem, Yöneylem Araştırması ve WinQSB Uygulamaları. Ankara: Seçkin Yayıncılık, 2013.
  • [47]F. S. Hillier and G. J. Lieberman, Introduction to Operational Research. New York: McGraw-Hill, 2001.
  • [48]B. F. Yıldırım and E. Önder, İşletmeciler, Mühendisler ve Yöneticiler için Operasyonel, Yönetsel ve Stratejik Problemlerin Çözümünde Çok Kriterli Karar Verme Yöntemleri. Bursa: Dora Yayınları, 2014.
  • [49]S. Hashemkhani Zolfani, J. Salimi, R. Maknoon, and K. Simona, “Technology foresight about R&D projects selection; application of SWARA method at the policy making level,” Eng. Econ., vol. 26, no. 5, pp. 571–580, 2015.
  • [50]D. Shine, “Cloud is headline priority for News Corp,” no. August, pp. 11–14, 2016.
  • [51]F. Mohammed, O. Ibrahim, and N. Ithnin, “Factors influencing cloud computing adoption for e-government implementation in developing countries,” J. Small Bus. Enterp. Dev., vol. 18, no. 3, pp. 297–327, 2016.
  • [52]G. S. Alijani, H. K. Fulk, A. Omar, and R. Tulsi, “Cloud Computing Effects on Small Business.,” Entrep. Exec., vol. 19, pp. 35–45, 2014.
  • [53]P. Gupta, A. Seetharaman, and J. Rudolph, “The usage and adoption of cloud computing by small and medium businesses,” Int. J. Inf. Manage., vol. 33, no. 5, pp. 861–874, 2013.
  • [54]G. Ramachandran, N., Sivaprakasam, P., Thangamani, G., & Anand, “Selecting a suitable Cloud Computing technology deployment model for an academic institute,” Campus-Wide Inf. Syst., vol. 31, no. 5, pp. 319–345, 2014.
  • [55]I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun, “Home is safer than the cloud! Privacy Concerns for Consumer Cloud Storage,” Soups ‟11, p. 1, 2011.
  • [56]L. Stark and M. Tierney, “Lockbox: Mobility, privacy and values in cloud storage,” Ethics Inf. Technol., vol. 16, no. 1, pp. 1–13, 2014.
  • [57]O. Yigitbasioglu, “Modelling the Intention to Adopt Cloud Computing Services: A Transaction Cost Theory Perspective,” Australas. J. Inf. Syst., vol. 18, no. 3, pp. 193–210, 2014.
  • [58]Y. Cui, Z. Lai, and N. Dai, “A First Look at Mobile Cloud Storage Services : Architecture , Experimentation and Challenge,” IEEE Netw., vol. 30, no. 4, pp. 16–21, 2016.
  • [59]B. Martini and K. K. R. Choo, “Cloud storage forensics: OwnCloud as a case study,” Digit. Investig., vol. 10, no. 4, pp. 287–299, 2013.
  • [60]J. Nakhaei, S. Lale Arefi, M. Bitarafan, and S. Kildienė, “Evaluation of light supply in the public underground safe spaces by using of COPRAS-SWARA methods,” Int. J. Strateg. Prop. Manag., vol. 20, no. 2, pp. 198–206, 2016.
  • [61]“https://www.box.com/cloud-storage.” .
  • [62]E. K. Zavadskas and A. Kaklauskas, Multicriteria Evaluation of Building (Pastatų sistemotechninis įvertinimas). Vilnius: Technika, 1996.
  • [63]E. Aksoy, N. Ömürbek, and M. Karaatli, “AHP Temelli MULTIMOORA ve COPRAS Yöntemi ile Türkiye Kömür İşletmelerinin Performans Değerlendirmesi,” Hacettepe Üniversitesi İktisadi ve İdari Bilim. Fakültesi Derg., vol. 33, no. 4, pp. 1–28, 2015.
  • [64]A. Kaklauskas, E. K. Zavadskas, S. Raslanas, R. Ginevicius, A. Komka, and P. Malinauskas, “Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case,” Energy Build., vol. 38, no. 5, pp. 454–462, May 2006.
  • [65]G. Popović, D. Stanujkić, and S. Stojanović, “Investment project selection by applying COPRAS method and imprecise data,” Serbian J. Manag., vol. 7, no. 2, pp. 257–269, 2012.
  • [66]M. C. Das, B. Sarkar, and S. Ray, “A Framework to Measure Relative Performance of Indian Technical Institutions Using Integrated Fuzzy AHP and COPRAS Methodology,” Socioecon. Plann. Sci., vol. 46, no. 3, pp. 230–241, Sep. 2012.
  • [67]A. Özdağoğlu, “İmalat İşletmeleri için Eksantrik Pres Alternatiflerinin COPRAS Yöntemi ile Karşılaştırılması,” Gümüşhane Üniversitesi Sos. Bilim. Elektron. Derg., vol. 8, no. Haziran, pp. 1–22, 2013.
  • [68]S. H. Zolfani and M. Bahrami, “Investment Prioritizing in High Tech Industries Based on SWARA-COPRAS Approach,” Technol. Econ. Dev. Econ., vol. 20, no. 3, pp. 534–553, 2014.
  • [69]G. Sarıçalı and N. Kundakcı, “AHP ve COPRAS Yöntemlerı le Otel Alternatı flerı n n Değerlendı rı lmesı ,” Int. Rev. Econ. Manag., vol. 4, no. 1, pp. 45–66, 2016.
  • [70]M. Yazdani, P. Chatterjee, E. K. Zavadskas, and S. Hashemkhani Zolfani, “Integrated QFD-MCDM framework for green supplier selection,” J. Clean. Prod., vol. 142, no. 2017, pp. 3728–3740, 2016.
  • [71]E. Çakır and M. Özdemir, “Bulanık Çok Kriterli Karar Verme Yöntemlerinin Altı Sigma Projeleri Seçiminde Uygulanması,” Bus. Econ. Res. J., vol. 7, no. 2, pp. 167–201, 2016.
  • [72]E. Çakır, “Electronic Document Management System (EDMS) Software Selection with Fuzzy COPRAS Method: A Municipal Case,” in Law and Order in Turkish Society, W. Sayers and M. Avcı, Eds. Berlin: AGP Research, 2016, pp. 92–100.
  • [73]E. K. Zavadskas, A. Kaklauskas, Z. Turskis, and J. Tamosaitiene, “Contractor selection multi-attribute model applynig copras method with grey interval numbers,” 20th EURO Mini Conf. “Continuous Optim. Knowledge-Based Technol., pp. 241–247, 2008.
  • [74]E. Çakır and M. Özdemir, “Altı Sigma Projelerinin Bulanık COPRAS Yöntemiyle Değerlendirilmesi: Bir Üretim İşletmesi Örneği,” in XVIth International Symposium On Econometrics, Operations Research and Statistics, 2015, pp. 494–495.
  • [75]A. Özdağoğlu, “Çok Ölçütlü Karar Verme Modellerinde Normalizasyon Tekniklerinin Sonuçlara Etkisi : COPRAS Örneği,” Eskişehir Osmangazi Üniversitesi İİBF Derg., vol. 8, no. 2, pp. 229–252, 2013.
APA ÇAKIR E, KUTLU KARABIYIK B (2017). Bütünleşik SWARA - COPRAS Yöntemi Kullanarak Bulut Depolama Hizmet Sağlayıcılarının Değerlendirilmesi. Bilişim Teknolojileri Dergisi, 10(4), 417 - 434.
Chicago ÇAKIR Engin,KUTLU KARABIYIK BÜŞRA Bütünleşik SWARA - COPRAS Yöntemi Kullanarak Bulut Depolama Hizmet Sağlayıcılarının Değerlendirilmesi. Bilişim Teknolojileri Dergisi 10, no.4 (2017): 417 - 434.
MLA ÇAKIR Engin,KUTLU KARABIYIK BÜŞRA Bütünleşik SWARA - COPRAS Yöntemi Kullanarak Bulut Depolama Hizmet Sağlayıcılarının Değerlendirilmesi. Bilişim Teknolojileri Dergisi, vol.10, no.4, 2017, ss.417 - 434.
AMA ÇAKIR E,KUTLU KARABIYIK B Bütünleşik SWARA - COPRAS Yöntemi Kullanarak Bulut Depolama Hizmet Sağlayıcılarının Değerlendirilmesi. Bilişim Teknolojileri Dergisi. 2017; 10(4): 417 - 434.
Vancouver ÇAKIR E,KUTLU KARABIYIK B Bütünleşik SWARA - COPRAS Yöntemi Kullanarak Bulut Depolama Hizmet Sağlayıcılarının Değerlendirilmesi. Bilişim Teknolojileri Dergisi. 2017; 10(4): 417 - 434.
IEEE ÇAKIR E,KUTLU KARABIYIK B "Bütünleşik SWARA - COPRAS Yöntemi Kullanarak Bulut Depolama Hizmet Sağlayıcılarının Değerlendirilmesi." Bilişim Teknolojileri Dergisi, 10, ss.417 - 434, 2017.
ISNAD ÇAKIR, Engin - KUTLU KARABIYIK, BÜŞRA. "Bütünleşik SWARA - COPRAS Yöntemi Kullanarak Bulut Depolama Hizmet Sağlayıcılarının Değerlendirilmesi". Bilişim Teknolojileri Dergisi 10/4 (2017), 417-434.