Yıl: 2018 Cilt: 50 Sayı: 2 Sayfa Aralığı: 116 - 121 Metin Dili: İngilizce DOI: 10.5152/eurasianjmed.2018.0010 İndeks Tarihi: 04-12-2018

Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level

Öz:
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used for their anti-inflammatory, analgesic,and antipyretic effects. NSAIDs generally work by blocking the production of prostaglandins (PGs) throughthe inhibition of two cyclooxygenase enzymes. PGs are key factors in many cellular processes, such as gastrointestinalcytoprotection, hemostasis and thrombosis, inflammation, renal hemodynamics, turnover ofcartilage, and angiogenesis. Interest has grown in the various effects of NSAIDs during the last decade. Epidemiologicalstudies have revealed the reduced risk of several cancer types and neurodegenerative diseases byprolonged use of NSAIDs. Recent advances in the understanding of the cellular and molecular mechanismsof NSAIDs will accelerate the processes of discovery and clinical implementation. This review summarizesthe molecular mechanisms of NSAIDs on the body systems.
Anahtar Kelime:

Konular: Genel ve Dahili Tıp
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Bhala N, Emberson J, Merhi A, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 2013; 382: 769-79. [CrossRef ]
  • Bacchi S, Palumbo P, Sponta A, Coppolino MF. Clinical pharmacology of non-steroidal antiinflammatory drugs: a review. Antiinflamm Antiallergy Agents Med Chem 2012; 11: 52-64. [CrossRef ]
  • Samad TA, Sapirstein A, Woolf CJ. Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol Med 2002; 8: 390-6. [CrossRef ]
  • Birmingham B, Buvanendran A. Nonsteroidal anti-inflammatory drugs, Acetaminophen, and COX-2 inhibitors. Turk DC, Argoff CE, Hurley RW, eds. Practical Management of Pain. Philadelphia: Elsevier 2014; 553-68. e5.
  • Zidar N, Odar K, Glavac D, et al. Cyclooxygenase in normal human tissues-is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J Cell Mol Med 2009; 13: 3753-63. [CrossRef ]
  • Consalvi S, Biava M, Poce G, 2015. COX inhibitors: a patent review (2011-2014). Expert Opin Ther Pat 2015; 25: 1357-71. [CrossRef ]
  • Borazan NH, F.D. Nonsteroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, nonopioid analgesics, & drugs used in gout. Katzung BG, Trevor AJ, editors. Basic and Clinical Pharmacology. 13 ed. New York: McGraw-Hill Education; 2015. p. 618.
  • Liu J, Gao HY, Wang XF. The role of the Rho/ ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system. Neural Regen Res 2015; 10: 1892-6. [CrossRef ]
  • Tsujimoto S, Kishina M, Koda M, et al. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ. Int J Mol Med 2016; 38: 721-8. [CrossRef]
  • Batulan Z, Nalbantoglu J, Durham HD. Nonsteroidal anti-inflammatory drugs differentially affect the heat shock response in cultured spinal cord cells. Cell Stress Chaperones 2005; 10: 185-96. [CrossRef ]
  • Hovens MM, Snoep JD, Tamsma JT, Huisman MV. Aspirin in the prevention and treatment of venous thromboembolism. J Thromb Haemost 2006; 4: 1470-5. [CrossRef ]
  • Wu KK. Aspirin and other cyclooxygenase inhibitors: new therapeutic insights. Semin Vasc Med 2003; 3: 107-12. [CrossRef ]
  • Cho JY, Immunomodulatory effect of nonsteroidal anti-inflammatory drugs (NSAIDs) at the clinically available doses. Arch Pharm Res 2007; 30: 64-74. [CrossRef ]
  • Lee CH, Yoo KY, Choi JH, et al. Cyclooxygenase-2 immunoreactivity and protein level in the gerbil hippocampus during normal aging. Neurochem Res 2010; 35: 99-106. [CrossRef ]
  • Yagami T, Koma H, Yamamoto Y. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol Neurobiol 2016; 53: 4754-71. [CrossRef ]
  • Krause DL, Müller N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int J Alzheimers Dis 2010; 14; 2010. pii: 732806.
  • Cudaback E, Jorstad NL, Yang Y, Montine TJ, Keene CD. Therapeutic implications of the prostaglandin pathway in Alzheimer’s disease. Biochem Pharmacol 2014; 88: 565-72. [CrossRef ]
  • Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2005; 25: 8240-9. [CrossRef ]
  • Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000; 20: 5709-14. [CrossRef ]
  • Strohmeyer R, Kovelowski CJ, Mastroeni D, et al. Microglial responses to amyloid beta peptide opsonization and indomethacin treatment. Journal of Neuroinflammation 2005; 2: 18. [CrossRef ]
  • Rees K, Stowe R, Patel S, et al. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies. Cochrane Database Syst Rev 2011; CD008454. [CrossRef ]
  • Aronoff DM, Neilson EG. Antipyretics: mechanisms of action and clinical use in fever suppression. Am J Med 2001; 111: 304-15. [CrossRef ]
  • Boulant JA. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis 2000; 31 (Suppl 5): S157-61. [CrossRef ]
  • Greisman LA, Mackowiak PA. Fever: beneficial and detrimental effects of antipyretics. Curr Opin Infect Dis 2002; 15: 241-5. [CrossRef ]
  • Matsui H, Shimokawa O, Kaneko T, et al. The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr 2011; 48: 107-11. [CrossRef ]
  • Musumba C, Pritchard DM, Pirmohamed M. Review article: cellular and molecular mechanisms of NSAID-induced peptic ulcers. Aliment Pharmacol Ther 2009; 30: 517-31. [CrossRef ]
  • Mizushima T. Various stress proteins protect gastric mucosal cells against non-steroidal antiinflammatory drugs. Inflammopharmacology 2007; 15: 67-73. [CrossRef ]
  • Harris RE, Chlebowski RT, Jackson RD, et al. Breast cancer and nonsteroidal anti-inflammatory drugs: prospective results from the Women’s Health Initiative. Cancer Res 2003; 63: 6096-101.
  • Kömhoff M, Wang JL, Cheng HF, et al. Cyclooxygenase-2-selective inhibitors impair glomerulogenesis and renal cortical development. Kidney Int 2000; 57: 414-22. [CrossRef ]
  • Hörl WH. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals (Basel) 2010; 3: 2291-321. [CrossRef ]
  • Okamura M, Takano Y, Hiramatsu N, et al. Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. Am J Physiol Renal Physiol 2008; 295: F1495-503. [CrossRef]
  • Norregaard R, Kwon TH, Frokiaer J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract 2015; 34: 194-200. [CrossRef ]
  • Sadowski J, Badzynska B. Intrarenal vasodilator systems: NO, prostaglandins and bradykinin. An integrative approach. J. Physiol Pharmacol. 2008; 59 (Suppl 9): 105-34.
  • Davidge S.T. Prostaglandin H synthase and vascular function. Circ Res 2001; 89: 650-60. [CrossRef ]
  • Weir MR. Renal effects of nonselective NSAIDs and coxibs. Cleve Clin J Med 2002; 69 (Suppl 1): SI53-8. [CrossRef ]
  • Vuolteenaho K, Moilanen T, Moilanen E. Nonsteroidal anti-inflammatory drugs, cyclooxygenase- 2 and the bone healing process. Basic Clin Pharmacol Toxicol 2008; 102: 10-4.
  • Paralkar VM, Grasser WA, Mansolf AL, et al. Regulation of BMP-7 expression by retinoic acid and prostaglandin E(2). J Cell Physiol 2002; 190: 207-17. [CrossRef ]
  • Machwate M, Harada S, Leu CT, et al, Prostaglandin receptor EP(4) mediates the bone anabolic effects of PGE(2). Mol Pharmacol 2001; 60: 36-41. [CrossRef ]
  • Pountos I, Georgouli T, Calori GM, Giannoudis PV. Do Nonsteroidal anti-ınflammatory drugs affect bone healing? A critical analysis. Scientific World Journal 2012; 2012: 606404. [CrossRef ]
  • Gerstenfeld LC, Thiede M, Seibert K, et al. Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs. J Orthop Res 2003; 21: 670-5. [CrossRef ]
  • Arikawa T, Omura K, Morita I. Regulation of bone morphogenetic protein-2 expression by endogenous prostaglandin E2 in human mes enchymal stem cells. J Cell Physiol 2004; 200: 400-6. [CrossRef ]
  • Cottrell J, O’Connor JP. effect of non-steroidal anti-ınflammatory drugs on bone healing. Pharmaceuticals (Basel) 2010; 3: 1668-93. [CrossRef ]
  • Maxis K, Delalandre A, Pelletier JM, et al. The shunt from the cyclooxygenase to lipoxygenase pathway in human osteoarthritic subchondral osteoblasts is linked with a variable expression of the 5-lipoxygenase-activating protein. Arthritis Res Ther 2006; 8: R181. [CrossRef ]
  • Gallelli L, Galasso O, Falcone D, et al. The effects of nonsteroidal anti-inflammatory drugs on clinical outcomes, synovial fluid cytokine concentration and signal transduction pathways in knee osteoarthritis. A randomized open label trial. Osteoarthritis Cartilage 2013; 21: 1400-8. [CrossRef ]
  • Arun B, Goss P. The role of COX-2 inhibition in breast cancer treatment and prevention. Semin Oncol 2004; 31(2 Suppl 7): 22-9. [CrossRef ]
  • Rayburn ER, Ezell SJ, Zhang R. Anti-Inflammatory Agents for Cancer Therapy. Mol Cell Pharmacol 2009; 1: 29-43. [CrossRef ]
  • Cruz-Correa M, Hylind LM, Romans KE, Booker SV, Giardiello FM. Long-term treatment with sulindac in familial adenomatous polyposis: a prospective cohort study. Gastroenterology 2002; 122: 641-5. [CrossRef]
  • Gong L, Thorn CF, Bertagnolli MM, et al. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 2012; 22: 310-8. [CrossRef ]
  • Umar A, Steele VE, Menter DG, Hawk ET. Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Semin Oncol 2016; 43: 65-77. [CrossRef ]
  • Kargman SL, O’neill GP, Vickers PJ, et al. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res 1995; 55: 2556-
  • Shao J, Jung C, Liu C, Sheng H. Prostaglandin E2 Stimulates the beta-catenin/T cell factordependent transcription in colon cancer. J Biol Chem 2005; 280: 26565-72. [CrossRef ]
  • Stark LA, Din FV, Zwacka RM, Dunlop MG. Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirinmediated apoptosis in colon cancer cells. FASEB J 2001; 15: 1273-5. [CrossRef ]
  • YamamotoY, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107: 135-42. [CrossRef ]
  • Boon EM, Keller JJ, Wormhoudt TA, et al. Sulindac targets nuclear beta-catenin accumulation and wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer 2004; 90: 224-9. [CrossRef ]
APA GUNAYDİN C, BİLGE S (2018). Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. , 116 - 121. 10.5152/eurasianjmed.2018.0010
Chicago GUNAYDİN Caner,BİLGE S. Sirri Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. (2018): 116 - 121. 10.5152/eurasianjmed.2018.0010
MLA GUNAYDİN Caner,BİLGE S. Sirri Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. , 2018, ss.116 - 121. 10.5152/eurasianjmed.2018.0010
AMA GUNAYDİN C,BİLGE S Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. . 2018; 116 - 121. 10.5152/eurasianjmed.2018.0010
Vancouver GUNAYDİN C,BİLGE S Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. . 2018; 116 - 121. 10.5152/eurasianjmed.2018.0010
IEEE GUNAYDİN C,BİLGE S "Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level." , ss.116 - 121, 2018. 10.5152/eurasianjmed.2018.0010
ISNAD GUNAYDİN, Caner - BİLGE, S. Sirri. "Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level". (2018), 116-121. https://doi.org/10.5152/eurasianjmed.2018.0010
APA GUNAYDİN C, BİLGE S (2018). Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian Journal of Medicine, 50(2), 116 - 121. 10.5152/eurasianjmed.2018.0010
Chicago GUNAYDİN Caner,BİLGE S. Sirri Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian Journal of Medicine 50, no.2 (2018): 116 - 121. 10.5152/eurasianjmed.2018.0010
MLA GUNAYDİN Caner,BİLGE S. Sirri Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian Journal of Medicine, vol.50, no.2, 2018, ss.116 - 121. 10.5152/eurasianjmed.2018.0010
AMA GUNAYDİN C,BİLGE S Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian Journal of Medicine. 2018; 50(2): 116 - 121. 10.5152/eurasianjmed.2018.0010
Vancouver GUNAYDİN C,BİLGE S Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian Journal of Medicine. 2018; 50(2): 116 - 121. 10.5152/eurasianjmed.2018.0010
IEEE GUNAYDİN C,BİLGE S "Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level." Eurasian Journal of Medicine, 50, ss.116 - 121, 2018. 10.5152/eurasianjmed.2018.0010
ISNAD GUNAYDİN, Caner - BİLGE, S. Sirri. "Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level". Eurasian Journal of Medicine 50/2 (2018), 116-121. https://doi.org/10.5152/eurasianjmed.2018.0010