Yıl: 2018 Cilt: 33 Sayı: 2 Sayfa Aralığı: 729 - 742 Metin Dili: Türkçe İndeks Tarihi: 13-12-2018

Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi

Öz:
Katmanlı imalat teknolojileri için metal malzemeden fonksiyonel parça üretimi amaçlı araştırmalar artarakdevam etmektedir. Söz konusu katmanlı imalat teknolojileri; kullanılan malzeme formu, malzeme eklemetekniği, enerji girdisi çeşidi ve proses konfigürasyonu gibi pek çok konuda farklılıklar göstermektedir. Bunlararasından lazerle metal toz ergitme yöntemi, yeni malzeme çeşitleri açısından sunduğu esneklik, incegeometrik unsurların üretilebilmesi ve yüzey kalitesinin diğer yöntemlere kıyasla iyi olması sebebi ile çeşitliendüstri kolları tarafından tercih edilmektedir. Bununla beraber söz konusu yöntemin doğası gereği meydanagelen, metal tozunun hızlı ergime ve katılaşma süreçleri sebebi ile iç (artık) gerilmeler oluşmakta, bugerilmelere bağlı olarak parçada deformasyonlar meydana gelebilmekte ve dolayısıyla, parça geometrisiveya malzemesine bağlı olarak hedeflenen kalitede üretimler elde edilememektedir. Söz konusu zorluklarınüstesinden gelmek, ancak lazerle metal toz ergitme yönteminin imalat/proses parametreleri açısındanoptimize edilmesi ile mümkün olmaktadır. Bununla beraber ilgili proseste yer alan onlarca farklıparametrenin etkisinin tek bir araştırmacı veya kurum tarafından anlaşılması, zaman ve maliyet açısındanuygulanabilir değildir. Bu sebeple bu çalışmada literatürde geçen farklı araştırmalar sistematik olarak gözdengeçirilmiş, proseste kullanılan parametreler açıklanmış, farklı durumlarda karşılaşılan zorluklara dikkatçekilmiş ve bu zorlukların üstesinden gelebilmek için proses parametrelerinde yapılan geliştirmeler ortayakonmuştur.
Anahtar Kelime:

Investigation of the effect of different process parameters for laser additive manufacturing of metals

Öz:
Many research projects are being conducted regarding additive manufacturing technologies, which help widen their application field for the manufacturing of functional metallic parts. Additive manufacturing technologies differ in many ways, such as the form of the material used, the material addition technique employed, the type of the energy input and the process configuration. Among these, laser additive manufacturing is preferred by industry due to their flexibility for new material types, the ability to produce small geometrical features and better surface quality compared to the other methods. However, due to the rapid melting and solidification processes inherent in this method, the internal stresses increase, deformations occur, and therefore, high quality products cannot be obtained depending on the geometry and the material selection. It is only possible to overcome these challenges by optimizing the process in terms of different parameters. However, it is not feasible in terms of time and cost to understand the effects of dozens of different parameters on the relevant process by a single investigator or an institution. For this reason, in this paper different studies in the literature have been systematically reviewed, the parameters used in the process have been explained, the challenges encountered in different cases have been pointed out, and the improvements made in the process parameters have been revealed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Moroni G., Syam W.P., Petrò S., Functionality-based part orientation for additive manufacturing, Procedia CIRP, 36, 217-222, 2015.
  • Wang D., Yang Y., Yi Z., Su X., Research on the fabricating quality optimization of the overhanging surface in SLM process, The International Journal of Advanced Manufacturing Technology, 65 (9-12), 1471- 1484, 2013.
  • Mercelis P., Control of selective laser sintering and selective laser melting processes, Doktora Tezi, Catholic University of Leuven, Leuven, Belçika, 2007.
  • Paul R., Anand S., Process energy analysis and optimization in selective laser sintering, Journal of Manufacturing Systems, 31 (4), 429-437, 2012.
  • Amini M., Time Estimation for Additive Manufacturing, Doktora Tezi, Texas State University, Texas, ABD, 2014.
  • Thomas D.S., Gilbert S.W., Costs and cost effectiveness of additive manufacturing, NIST Special Publication, 1176, 12, 2014.
  • Frank D., Fadel G., Expert system-based selection of the preferred direction of build for rapid prototyping processes, Journal of Intelligent Manufacturing, 6 (5), 339-345, 1995.
  • Pohl H., Simchi A., Issa M., Dias H.C., Thermal stresses in direct metal laser sintering, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 366-372, 6-8 August, 2001.
  • Gong H., Generation and detection of defects in metallic parts fabricated by selective laser melting and electron beam melting and their effects on mechanical properties, Doktora Tezi, University of Louisville, Louisville, ABD, 2013.
  • Zeng K., Optimization of support structures for selective laser melting, Doktora Tezi, University of Louisville, Louisville, ABD, 2015.
  • Godfrey D., Advancing Aerospace Production with Arcam Electron Beam Melting Technology. http://www.arcamgroup.com/files/arcam-investor-daymarch-9-2016-honeywell.pdf. Yayın tarihi Mart 2016. Erişim tarihi Mayıs 2017.
  • Jhabvala J., Study of the consolidation process under macro-and microscopic thermal effects in selective laser sintering and selective laser melting, Doktora Tezi, École Polytechnique Fédérale De Lausanne, Lausanne, İsviçre, 2010.
  • Manfredi D., Calignano F., Krishnan M., Canali R., Ambrosio E.P., Biamino S., Fino P., Additive manufacturing of al alloys and aluminium matrix composites (AMCs), Light Metal Alloys Applications, 11, 3-34, 2014.
  • Chua C.K., Leong K.F., Lim C.S., Rapid Prototyping: Principles and Applications 2nd Edition, World Scientific Publishing Co. Pte. Ltd., Singapore, 2003.
  • Allen S., Dutta D., On the computation of part orientation using support structures in layered manufacturing, Proceedings of Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 259-269, 8-10 August, 1994.
  • EOS. EOS Print 2.0. https://www.eos.info /systems_ solutions/software/eosprint . Yayın tarihi Ocak 2017. Erişim tarihi Mayıs 2017.
  • Materialise. Materialise Magics. http://www. materialise .com/en/software/materialise-magics. Yayın tarihi Ocak 2017. Erişim tarihi Mayıs 2017.
  • Concept Laser. The Technology. https://www.conceptlaser.de/en/technology.html. Yayın tarihi Aralık 2015. Erişim tarihi Mayıs 2017. https://www.conceptlaser.de/en/technology/lasercusingr.html
  • LPW Technology. Powder Range. http://www. lpwtechnology.com/wp-content/uploads /2016/11 /LPW_Powders_Brochure-Nov-2016.pdf. Yayın tarihi Kasım 2016, Erişim tarihi Mayıs 2017.
  • Vayre B., Vignat F., Villeneuve F., Metallic additive manufacturing: state-of-the-art review and prospects, Mechanics & Industry, 13 (2), 89-96, 2012.
  • Levy G.N., Schindel R., Kruth J.P., Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives, CIRP Annals-Manufacturing Technology, 52 (2), 589-609, 2003.
  • Herderick E., Additive manufacturing of metals: A review, Materials Science & Technology Conference, Ohio, ABD, 1413-1425, 16-20 October, 2011.
  • Gao W., Zhang Y., Ramanujan D., Ramani K., Chen Y., Williams C.B., Zavattieri P.D., The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design, 69, 65-89, 2015
  • Chartoff R.P., Priore B., Klosterman D.A., Pak S.S., Composite tooling via laminated object manufacturingA rapid and affordable method, Technology transfer in a global community, 1048-1059, 1996.
  • Yilmaz O., Ugla A.A., Microstructure characterization of SS308LSi components manufactured by GTAWbased additive manufacturing: shaped metal deposition using pulsed current arc, The International Journal of Advanced Manufacturing Technology, 89 (1), 13-25, 2016.
  • Kruth J.P., Wang X., Laoui T., Froyen L., Lasers and materials in selective laser sintering, Assembly Automation, 23 (4), 357-371, 2003.
  • Wohlers T., Additive Manufacturing and 3D Printing State of the Industry, Wohlers Report, ISBN 0-9754429- 9-6, 2013.
  • Çelik İ., Karakoç F., Çakır M.C., Duysak A., Hızlı Prototipleme Teknolojileri ve Uygulama Alanları, Journal of the Institute of Science & Technology of Dumlupinar University, (031), 53-70, 2013.
  • Aktimur B., Gökpınar, E.S., Katmanlı Üretimin Havacılıktaki Uygulamaları, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 3 (2), 463-469, 2015.
  • Gibson I., Rosen D.W., Stucker, B., Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, Springer, New York, ABD, 2014.
  • Özek C., Taşdemir V., Experimental investigation ofthe effects of blank holder force and die surface angle on the warm deep drawing of AA5754-O alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 171-179, 2017.
  • Yaman K., Başaltın M., Investigations on the cutting parameters and the tool wear of SAE 1030 forged steel material by acoustic emission in turning operation, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4), 1077-1088, 2017.
  • Kayacan M.C., Delikanlı Y.E., Duman B., Özsoy K., Examining of mechanical properties of transitive (variable) porous specimens produced by SLS using Ti6Al4v alloy powder, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 127-143, 2018.
  • VDI 3404, Additive Manufacturing: Basics, Definitions, Processes, VDI, 2014.
  • ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, ASTM International, 2012.
  • Poyraz Ö., Yasa E., Pilatin S., Katmanlı İmalat Ve Talaşlı İmalatın Birlikte Uygulandığı Melez Üretim Sistemleri Üzerine, 6. Ulusal Talaşlı İmalat Sempozyumu, İstanbul - Türkiye, 103-115, 5-7 Kasım, 2015.
  • DMT 3D Metal Printing Technology, http://www.intermoldkorea.com: 8080/data/att/ company_ad /1414720424_InssTek%20Catalog (2014_Eng%20version).pdf Yayın tarihi 2014, Erişim tarihi Ekim 2017.
  • Islam M., Purtonen T., Piili H., Salminen A., Nyrhilä O., Temperature profile and imaging analysis of laser additive manufacturing of stainless steel, Physics Procedia, 41, 835-842, 2013.
  • Hofman J.T., Development of an observation and control system for industrial laser cladding, Doktora Tezi, University of Twente, Hollanda, 2009.
  • Craeghs T., Clijsters S., Yasa E., Kruth J.P., Online quality control of selective laser melting Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 212-226, 8-10 August, 2011.
  • Patil N., Pal D., Stucker B.E., A new finite element solver using numerical Eigen modes for fast simulation of additive manufacturing processes, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 12-14, 12-14 August, 2013.
  • Zeng K., Pal D., Stucker B., A review of thermal analysis methods in Laser Sintering and Selective Laser Melting, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 796-814, 6-8 August, 2012.
  • Ding J., Colegrove P., Mehnen J., Ganguly S., Almeida P.S., Wang F., Williams S., Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts, Computational Materials Science, 50 (12), 3315-3322, 2011.
  • Kundakcioglu E., Lazoglu I., Rawal S., Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures, The International Journal of Advanced Manufacturing Technology, 85 (1-4), 493- 501, 2016.
  • Attar E., Simulation of selective electron beam melting processes, Doktroa Tezi, University of ErlangenNurnberg, Almanya, 2011.
  • Sih S.S., Barlow J.W., The prediction of the emissivity and thermal conductivity of powder beds, Particulate Science and Technology, 22 (4), 427-440, 2004.
  • Solakoğlu E.U, Yılmaz R., Ören S., Akbulut G., Poyraz Ö., Yasa E., Process Limits of DMLS in Terms of Minimum Hole and Boss Diameters with Varying Aspect Ratios, International Conference On Machine Design And Production, Bursa, Türkiye, 12-15 Temmuz, 2016.
  • Thomas D., The development of design rules for selective laser melting, Doktora Tezi, University of Wales, Cardiff, İngiltere, 2009.
  • Brandl E., Heckenberger U., Holzinger V., Buchbinder D., Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behaviour. Materials & Design, 34, 159-169, 2012.
  • Krol T.A., Seidel C., Schilp J., Hofmann M., Gan W., Zaeh M.F., Verification of structural simulation results of metal-based additive manufacturing by means of neutron diffraction, Physics Procedia, 41, 849-857, 2013.
  • Hussein A., Hao L., Yan C., Everson R., Young P., Advanced lattice support structures for metal additive manufacturing, Journal of Materials Processing Technology, 213 (7), 1019-1026, 2013.
  • Gan M.X., Wong C.H., Practical support structures for selective laser melting. Journal of Materials Processing Technology, 238, 474-484, 2016.
  • Cloots M., Spierings A.B., Wegener K., Assessing new support minimizing strategies for the additive manufacturing technology SLM, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 631-643, 12-14 August, 2013.
  • Cooper K., Steele P., Cheng B., Chou K., Contact-Free Support Structures for Part Overhangs in Powder-Bed Metal Additive Manufacturing, Proceedings of SME RAPID Conference, Orlando, Florida, ABD, 1-12, May 16-19, 2016.
  • Calignano F., Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting, Materials & Design, 64, 203- 213, 2014.
  • Krol T.A., Zäh M.F., Seidel C., Optimization of supports in metal-based additive manufacturing by means of finite element models, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 707-718, 6-8 August, 2012.
  • Mumtaz K.A., Vora P., Hopkinson N., A method to eliminate anchors/supports from directly laser melted metal powder bed processes, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 55-64, 8-10 August, 2011
  • Mullen L., Stamp R.C., Brooks W.K., Jones E., Sutcliffe C.J., Selective Laser Melting: A regular unit cell approach for the manufacture of porous, titanium, bone in‐growth constructs, suitable for orthopedic applications, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89 (2), 325-334, 2009.
  • Poyraz Ö., Yasa E., Akbulut G., Orhangül A., Pilatin, S., Investigation of Support Structures for Direct Metal Laser Sintering (DMLS) of In625 Parts, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 560-574, 7-9 August, 2015.
  • Mertens R., Clijsters S., Kempen K., Kruth J.P., Optimization of scan strategies in selective laser melting of aluminum parts with downfacing areas, Journal of Manufacturing Science and Engineering, 136 (6), 061012 1-7, 2014.
  • Yadroitsev I., Bertrand P., Smurov I., Parametric analysis of the selective laser melting process, Applied surface science, 253 (19), 8064-8069, 2007.
  • Mercelis P., Kruth J.P., Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyping Journal, 12 (5), 254-265, 2006.
  • Stamp R., Fox P., O’neill W., Jones E., Sutcliffe C., The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting, Journal of Materials Science: Materials in Medicine, 20 (9), 1839 -1848, 2009.
  • Cheng B., Shrestha S., Chou K., Stress and deformation evaluations of scanning strategy effect in selective laser melting, Additive Manufacturing, 12, 240-251, 2016.
  • Yuan P., Gu D., Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments, Journal of Physics D: Applied Physics, 48 (3), 1-16, 2015.
  • Papadakis L., Branner G., Schober A., Richter K.H., Uihlein T., Numerical modeling of heat effects during thermal manufacturing of aero engine components, In World Congress on Engineering, London, İngiltere, 4-6 July, 2012.
  • Van Belle L., Vansteenkiste G., Boyer J.C., Comparisons of numerical modelling of the Selective Laser Melting, In Key Engineering Materials, 504, 1067-1072, 2012.
  • Zaeh M.F., Branner G., Investigations on residual stresses and deformations in selective laser melting, Production Engineering, 4 (1), 35-45, 2010.
  • Sufiiarov V.S., Popovich A.A., Borisov E.V., Polozov I.A., Masaylo D.V., Orlov A.V., The Effect of Layer Thickness at Selective Laser Melting, Procedia Engineering, 174, 126-134, 2017.
  • Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L., Review of selective laser melting: Materials and applications, Applied Physics Reviews, 2 (4), 041101, 2015.
  • Chalancon A., Bourell D., Measured Energy Densities For Polyamide 12 And Comparison Of Values Calculated For Laser Sintering, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 2217-2223, 8-10 August, 2016.
  • Williams J., Miller D., Deckard C., Selective Laser Sintering Part Strength as Function of Andrew Number, Scan Rate and Spot Size, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 549-557, 12-14 August, 1996.
  • Nelson J.C., Selective laser sintering: a definition of the process and an empirical sintering model, Doktora Tezi, University of Texas at Austin, Texas, ABD, 1993.
  • Simchi A., Pohl H., Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Materials Science and Engineering: A, 359 (1), 119-128, 2003.
  • Morgan R.H., Papworth A.J., Sutcliffe C., Fox P., O'neill W., High density net shape components by direct laser re-melting of single-phase powders, Journal of Materials Science, 37 (15), 3093-3100, 2002.
  • Kruth J.P., Levy G., Klocke F., Childs T.H.C., Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP AnnalsManufacturing Technology, 56 (2), 730-759, 2007.
  • Kruth J.P., Badrossamay M., Yasa E., Deckers J., Thijs L., Van Humbeeck J., Part and material properties in selective laser melting of metals, Proceedings of the 16th international symposium on electromachining, Shanghai, Çin, 1-12, 19-23 April, 2010.
  • Leuders S., Thöne M., Riemer A., Niendorf T., Tröster T., Richard H.A., Maier H.J., On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, International Journal of Fatigue, 48, 300-307, 2013.
  • Kobryn P.A., Semiatin S.L., Mechanical properties of laser-deposited Ti-6Al-4V, Proceedings of Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 179-186, 6-8 August, 2001.
  • Luo Z., Yang F., Dong G., Tang Y., Zhao Y.F., Orientation Optimization in Layer-Based Additive Manufacturing Process, In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, Charlotte, North Carolina, ABD, 21-24 August, 2016.
  • Cheng W., Fuh J.Y.H., Nee A.Y.C., Wong Y.S., Loh H.T., Miyazawa T., Multi-objective optimization of part-building orientation in stereolithography, Rapid Prototyping Journal, 1 (4), 12-23, 1995.
  • Yasa E., Poyraz O., Solakoglu E.U., Akbulut G., Oren S., A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-based Superalloy, Procedia CIRP, 45, 175-178, 2016.
  • Yasa E., Kruth J.P., Application of laser re-melting on selective laser melting parts, Advances in Production Engineering and Management, 6 (4), 259-270, 2011.
  • Ibrahim D., Ding S., Sun S., Roughness Prediction for FDM Produced Surfaces, In International Conference Recent Trends in Engineering and Technology, Batam, Indonesia, 70-75, 13-14 February, 2014.
  • Hague R., Campbell I., Dickens P., Implications on design of rapid manufacturing, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217 (1), 25-30, 2003.
APA POYRAZ Ö, KUŞHAN M (2018). Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. , 729 - 742.
Chicago POYRAZ ÖZGÜR,KUŞHAN Melih Cemal Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. (2018): 729 - 742.
MLA POYRAZ ÖZGÜR,KUŞHAN Melih Cemal Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. , 2018, ss.729 - 742.
AMA POYRAZ Ö,KUŞHAN M Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. . 2018; 729 - 742.
Vancouver POYRAZ Ö,KUŞHAN M Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. . 2018; 729 - 742.
IEEE POYRAZ Ö,KUŞHAN M "Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi." , ss.729 - 742, 2018.
ISNAD POYRAZ, ÖZGÜR - KUŞHAN, Melih Cemal. "Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi". (2018), 729-742.
APA POYRAZ Ö, KUŞHAN M (2018). Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(2), 729 - 742.
Chicago POYRAZ ÖZGÜR,KUŞHAN Melih Cemal Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, no.2 (2018): 729 - 742.
MLA POYRAZ ÖZGÜR,KUŞHAN Melih Cemal Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.33, no.2, 2018, ss.729 - 742.
AMA POYRAZ Ö,KUŞHAN M Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2018; 33(2): 729 - 742.
Vancouver POYRAZ Ö,KUŞHAN M Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2018; 33(2): 729 - 742.
IEEE POYRAZ Ö,KUŞHAN M "Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33, ss.729 - 742, 2018.
ISNAD POYRAZ, ÖZGÜR - KUŞHAN, Melih Cemal. "Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/2 (2018), 729-742.