Yıl: 2018 Cilt: 27 Sayı: 1 Sayfa Aralığı: 1 - 17 Metin Dili: Türkçe DOI: 10.17827/aktd.329803 İndeks Tarihi: 28-01-2019

Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri

Öz:
Nöron, kas ve endokrin gibi hücrelerden elde edilen elektrobiyofizik kayıtlar, belirgin karakteristikleresahip ve voltajla aktive edilebilen kalsiyum (Ca2+) akımların olduğunu ortaya koymuştur. Kalsiyumkanalları aktivasyon durumlarına göre düşük voltajla aktive olan (LVA), düşük eşikli kalsiyum kanallar veyüksek voltajla aktive olan (HVA), yüksek eşikli kalsiyum kanalları olarak kategorize edilmiştir. Voltajkapılı kalsiyum kanalları; aktivasyon ve inaktivasyon kinetiklerine, iyon özelliklerine, geçirgenliklerine,ilaç ve toksinlere olan duyarlıklarına göre sınıflandırılmışlar. Voltaj bağımlı kalsiyum kanallarındokulardaki dağılımları farklı olup, değişik dokularda değişik karekteristikler gösterirler. Bu derlemede,voltaj kapılı kalsiyum kanallarıyla ilgili mevcutbilgiler özetlenmiştir.
Anahtar Kelime:

Konular: Genel ve Dahili Tıp Biyofizik

Voltage-Gated Calcium Channels and Molecular Features

Öz:
Electrobiophysical records obtained from cells such as neuron, muscle and endocrine have revealed that there are calcium (Ca2+) currents with distinctive characteristics which can be activated by voltage. Calcium channels have been categorized as low voltage-activated Ca2+ channels (LVA), low-threshold calcium channels and high-voltage activated calcium channels (HVA), high-threshold calcium channels in terms of calcium channels activation. Voltage-gated calcium channels have been classified with respect to their activation and inactivation kinetics, ion characteristics, the permeability and their sensitivity to drug and the toxin. Voltage-dependent calcium channels have different distributions in the tissues and show different characteristics in different tissues. In this review, the available information about voltage-gated calcium channels have been summarized
Anahtar Kelime:

Konular: Genel ve Dahili Tıp Biyofizik
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Lu J, Dalton JF, Stokes DR, Calabrese RL. Functional role of Ca2+ currents in graded and spike-mediated synaptic transmission between leech heart interneurons. J Neurophysiol. 1997;77:1779-94.
  • Grolleau F, Lapied B. Two distinct low-voltage-activated Ca2+ currents contribute to the pacemaker mechanism in cockroach dorsal unpaired median neurons. J Neurophysiol.1996;76:963-76.
  • Schafer WR, Kenyon CJ. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature. 1995;375:73-8.
  • Smith LA, Wang XJ, Peixoto AA, Neumann EK, Hall LM, Hall JC. A drosophila calcium channel α1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J Neurosci. 1996;16:7868-79.
  • Edmonds B, Klein M, Dale N, Kandel ER. Contributions of two types of calcium channels to synaptic transmission and plasticity. Science. 1990;250:1142-7.
  • Greenberg DA. Calcium channels and calcium channel antagonists. Ann Neurol. 1987;21:317-30.
  • Moran Y, Barzilai MG, Liebeskind BJ, Zakon HH. Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol. 2015;218:515-25.
  • Horne WA, Ellinor PT, Inman I, Zhou M, Tsien RW, Schwarz TL. Molecular diversity of Ca2+ channel α1 subunits from the marine ray Discopyge ommata. Proc Natl Acad Sci USA. 1993;90:3787-91.
  • Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C. Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. New Phytol. 2010;187:23-43.
  • Wormuth C, Lundt A, Henseler C, Müller R, Broich K, Papazoglou A et al. Review: Cav2.3 R-type voltage-gated Ca2+ channels – functional implications in convulsive and non-convulsive seizure activity. Open Neurol J. 2016;10:99-126.
  • Terrance PS, Jean P, Eleanor M, John E. Molecular properties of voltage-gated calcium channels. In Voltage Gated Calcium Channels (Ed GW Zamponi): 61-94. US, Landes Publishers, 2005.
  • Aidley DJ, Stanfield PR. Ion Channels: Molecules in Action. New York, Cambridge University Press, 1996
  • Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83:117-61.
  • Gribkoff VK. The role of voltage-gated calcium channels in pain and nociception. Semin Cell Dev Biol. 2006;17:555–64.
  • Williams ME, Brust PF, Feldman DH, Patthi S, Simerson S, Maroufi A et al. Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science. 1992;257:389-95.
  • Mills LR, Niesen CE, So AP, Carlen PL, Spigelman I, Jones OT. N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J Neurosci. 1994;14:6815-24.
  • Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA. Biochemical properties and subcellular distribution of an N-type calcium channel α1 subunit. Neuron. 1992;9:1099-1115.
  • Houman K, Gerald WZ. Voltage-gated calcium channels and İdiopathic generalized epilepsies. Physiol Rev. 2006;86:941–66.
  • Yousef MF, Omar AH, Morsy MD, Abd El-Wahed MM, Ghanayem NM. The mechanism of action of calcium channel blockers in the treatment of diabetic nephropathy. Int J Diabetes Metab. 2005;13:76-82
  • Adams ME, Bindokas VP, Hasegawa L, Venema VJ. Ω-agatoxins: novel calcium channel antagonists of two subtypes from funnel web spider (agelenopsis aperta) venom. J Biol Chem. 1990;265:861-7.
  • Llinás R, Sugimori JW, Cherksey B. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci USA. 1989;86:1689-93.
  • Yue DT, Marban E. Permeation in the dihydropyridine-sensitive calcium channel. Multi-ıon occupancy but no anomalous mole-fraction effect between Ba2+ and Ca2+. J Gen Physiol. 1990;95:911-39.
  • Janis RA, Shrikhande AV, McCarthy RT, Howard AD, Greguski R, Scriabine A. Isolation and characterization of a fraction from brain that ınhibits 1,4-[3h]dihydroopyridine binding and L-type calcium channel current. FEBS Lett.1988; 239:233-6.
  • Rane SG, Holz GG, Dunlap K. Dihydropyridine inhibition of neuronal calcium current and substance p release. Pflugers Arch. 1987;409:361-6.
  • Tsien, RW, Tsien RY. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715-60.
  • Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer S A. Dominant role of N-type calcium channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988;239:57-61
  • Gupta D. A revıew on calcıum channel & its blockers. Int J Pharm Pharm Sci. 2012;3:57-61.
  • Chang FC, Hosey MM. Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J Biol Chem.1988; 263:18929-37.
  • Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness.Nat Genet. 1998;19:264-7.
  • Williams ME, Feldman DH, McCue AF, Brenner R, Veliçelebi G, Ellis SB et al. Structure and functional expression of α1, α2, and β subunits of a novel human neuronal calcium channel subtype. Neuron. 1992;8:71-84.
  • Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature.1989;340:230-3.
  • Eric RK, James HS, Thomas MJ, Steven AS, Hudspeth AJ. Principles of Neural Science. 5th Edition, New York, McGraw-Hill, 2013
  • Dolphin AC. G protein modulation of voltage-gated calcium channels. Pharmacol Rev. 2003;55:607-27.
  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structurefunction relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57:411-25
  • Tsien RW, Tsien RY. Calcium channels, stores and oscillations. Annu Rev Cell Biol. 1990;6:715-60.
  • Llinás R, Sugimori M, Hillman DE, Cherksey B. Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system. Trends Neurosci. 1992;15:351-5.
  • Tsien RW, Fox AP, Hess P, McCleskey EW, Nilius B, Nowycky MC et al. Multiple types of calcium channel in excitable cells. Soc Gen Physiol. 1987;41:167-87.
  • Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca2+ channel in vertebrate sensory neurones. Nature. 1984;310:501-2.
  • Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration J Physiol. 1967;192:479-92.
  • Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals. 2013;6:788-812.
  • Letts VA, Felix R, Biddlecome GH, Arikkath J, Mahaffey CL, Valenzuela A et al. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet. 1998;19:340-7.
  • Black JL, Lennon VA. Identification and cloning of putative human neuronal voltage-gated calcium channel gamma-2 and gamma-3 subunits: neurologic implications. Mayo Clin Proc. 1999;74:357-61.
  • Eberst R, Dai S, Klugbauer N, Hofmann F. Identification and functional characterization of a calcium channel gamma subunit. Pflugers Arch. 1997;433:633-7.
  • Bosse E, Regulla S, Biel M, Ruth P, Meyer HE, Flockerzi V et al. The cDNA and deduced amino acid sequence of the γ subunit of the L-type calcium channel from rabbit skeletal muscle. FEBS Lett. 1990;267:153-6.
  • Klugbauer N, Lacinová L, Marais E, Hobom M, Hofmann F. Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci. 1999;19:684-91.
  • De Jongh KS, Warner C, Catterall WA. Subunits of purified calcium channels. α2 and δ are encoded by the same gene. J Biol Chem. 1990;265:14738-41.
  • Ellis SB, Williams ME, Ways NR, Brenner R, Sharp AH, Leung AT et al. Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel. Science. 1988;241:1661-4.
  • Birnbaumer L, Campbell KP, Catterall WA, Harpold MM, Hofmann F, Horne WA et al. The naming of voltage-gated calcium channels. Neuron. 1994;13:505-6.
  • Glossmann H, Striessnig J, Hymel L, Schindler H. Purified L-type calcium channels: only one single polypeptide (α1-subunit) carries the drug receptor domains and is regulated by protein kinases. Biomed Biochim Acta. 1987;46:351-6.
  • Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N.The roles of the subunits in the function of the calcium channel. Science. 1991;253:1553-7.
  • Varadi G, Lory P, Schultz D, Varadi M, Schwartz A. Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. Nature. 1991;352:159-62
  • Ruth P, Röhrkasten A, Biel M, Bosse E, Regulla S, Meyer HE, Flockerzi V, Hofmann F. Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. Science. 1989;245:1115-8.
  • McKenna E, Koch WJ, Slish DF, Schwartz A. Toward an understanding of the dihydropyridine-sensitive calcium channel. Biochem Pharmacol. 1990;39:1145-50.
  • Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klöckner U et al. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci. 1999;19:1912-21.
  • Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A et al. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res. 1998;83:103-9.
  • Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science. 1993;260:1133-6.
  • Williams ME, Feldman DH, McCue AF, Brenner R, Veliçelebi G, Ellis SB et al. Structure and functional expression of α1, α2, and β subunits of a novel human neuronal calcium channel subtype. Neuron. 1992;8:71-84.
  • Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature. 1991;350:398-402.
  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K at al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987;328:313-8
  • Catterall WA. Structure and function of voltage-gated ion channels. In Molecular Biology of Membrane Transport Disorders, 2nd ed (Ed GS Stanley): 129-142. New-York, Plenum Press,1996.
  • Catterall WA. Structure and regulation of voltage-gated Ca+2 channels. Annu Rev Cell Dev Biol. 2000;16:521–55.
  • Dolphin A. Mechanism of modulation of voltage-dependent calcium channels by g proteins. J Physiol. 1998;506:3-11.
  • Glossmann H, Striessnig J. Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol. 1990;114:1-105.
  • Catterall WA, Seagar MJ, Takahashi M. Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J Biol Chem. 1988;263:3535-8.
  • Campbell KP, Leung AT, Sharp AH. The biochemistry and molecular biology of the dihydropyridine sensitive calcium channel. Trends Neurosci. 1988;11:425-30.
  • Catterall WA, Curtis BM. Molecular properties of voltage-sensitive calcium channels. Soc Gen Physiol. 1987;41:201-13.
  • Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev.2000;80:555-89.
  • William AC, Edward PR, Terrance PS, Joerg S. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57:411-25
APA emre m (2018). Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. , 1 - 17. 10.17827/aktd.329803
Chicago emre mustafa Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. (2018): 1 - 17. 10.17827/aktd.329803
MLA emre mustafa Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. , 2018, ss.1 - 17. 10.17827/aktd.329803
AMA emre m Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. . 2018; 1 - 17. 10.17827/aktd.329803
Vancouver emre m Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. . 2018; 1 - 17. 10.17827/aktd.329803
IEEE emre m "Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri." , ss.1 - 17, 2018. 10.17827/aktd.329803
ISNAD emre, mustafa. "Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri". (2018), 1-17. https://doi.org/10.17827/aktd.329803
APA emre m (2018). Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. Arşiv Kaynak Tarama Dergisi, 27(1), 1 - 17. 10.17827/aktd.329803
Chicago emre mustafa Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. Arşiv Kaynak Tarama Dergisi 27, no.1 (2018): 1 - 17. 10.17827/aktd.329803
MLA emre mustafa Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. Arşiv Kaynak Tarama Dergisi, vol.27, no.1, 2018, ss.1 - 17. 10.17827/aktd.329803
AMA emre m Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. Arşiv Kaynak Tarama Dergisi. 2018; 27(1): 1 - 17. 10.17827/aktd.329803
Vancouver emre m Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri. Arşiv Kaynak Tarama Dergisi. 2018; 27(1): 1 - 17. 10.17827/aktd.329803
IEEE emre m "Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri." Arşiv Kaynak Tarama Dergisi, 27, ss.1 - 17, 2018. 10.17827/aktd.329803
ISNAD emre, mustafa. "Voltaj Kapılı Kalsiyum Kanalları ve Moleküller Özellikleri". Arşiv Kaynak Tarama Dergisi 27/1 (2018), 1-17. https://doi.org/10.17827/aktd.329803