Yıl: 2018 Cilt: 60 Sayı: 2 Sayfa Aralığı: 42 - 46 Metin Dili: İngilizce DOI: 10.26657 / gulhane.00016 İndeks Tarihi: 09-05-2019

Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors

Öz:
Objectives: Hypertonic dextrose injection in prolotherapy is an injection-based treatmentused in chronic musculoskeletal conditions. Dextrose prolotherapy raises growth factor levelsand enhances tissue repair, reduces musculoskeletal pain. Despite of uses for many years, theeffect of dextrose solution on cellular and molecular base is not fully clear. Here, the roles ofdextrose solutions was tried to find out in different concentrations on human fibroblasts invitro. Gene expression alterations were analyzed in uses of dextrose solutions on growth andapoptotic factors.Methods: The effects of dextrose solution (1%, 5%, 10%-low doses, 15%, 20% and 25%-highdoses) were evaluated in vitro by using human fibroblast culture. In each condition total RNAextraction and cDNA synthesis were performed. The gene expression levels of angiogenicand apoptotic factors were analyzed by using real-time polymerase chain reaction. The geneexpression results of growth and apoptotic factors were correlated with control results.Results:Results; Dextrose solutions were affected the viability of fibroblast cells in culture flaskin high concentrations. In high doses dextrose concentrations, up to 80% of fibroblasts weredied because of toxic conditions. Viable fibroblast cell ratios were decreased proportionallydue to the dextrose concentration. Low dextrose concentrations increased gene expressionsin angiogenic (VEGFA, PDGFA, PDGFB, IGF1) and in apopitotic factors (CASP3 and CASP8) infibroblasts.Conclusions: Conclusion; Dextrose solution in high concentrations, decreases viable cell ratioson adult fibroblast cell line. Dextrose solutions in proper concentrations increase the geneexpressions of angiagenic and apopitotic factors on viable cells in adult fibroblast cell culture.
Anahtar Kelime:

Konular: Genel ve Dahili Tıp
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Boulanger E, Wautier MP, Gane P, Mariette C, Devuyst O, Wautier JL. The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products. Nephrol Dial Transplant 2004; 19(9): 2208-2216.
  • Rabago D, Yelland M, Patterson J, Zgierska A. Prolotherapy for chronic musculoskeletal pain. Am Fam Physician. 2011; 84(11): 1208-1210.
  • Rabago D, Slattengren A, Zgierska A. Prolotherapy in primary care practice. Prim Care. 2010; 37(1): 65-80.
  • Rabago D, Best TM, Beamsley M, Patterson J. A systematic review of prolotherapy for chronic musculoskeletal pain. Clin J Sport Med. 2005; 15(5): 376-380.
  • Desmoulière A, Badid C, Bochaton-Piallat ML, Gabbiani G. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol. 1997; 29(1): 19-30.
  • Radomska-Leśniewska DM, Bałan BJ, Skopiński P. Angiogenesis modulation by exogenous antioxidants. Cent Eur J Immunol. 2017; 42(4): 370-376.
  • Coco-Martin JM, Oberink JW, van der Velden-de Groot TA, Beuvery EC. Viability measurements of hybridoma cells in suspension cultures. Cytotechnology 1992; 8(1): 57-64.
  • Distel LM, Best TM. Prolotherapy: a clinical review of its role in treating chronic musculoskeletal pain. Am J Phys Med Rehabil. 2011; 3(6 Suppl 1):S78-81.
  • Yoshii Y, Zhao C, Schmelzer JD, Low PA, An KN, Amadio PC. Effects of multiple injections of hypertonic dextrose in the rabbit carpal tunnel: a potential model of carpal tunnel syndrome development. Hand. 2014; 9(1): 52-57.
  • Ryan M, Wong A, Rabago D, Lee K, Taunton J. Ultrasound-guided injections of hyperosmolar dextrose for overuse patellar tendinopathy: a pilot study. Br J Sports Med. 2011; 45(12): 972-977.
  • Seenauth C, Inouye V, Langland JO. Dextrose prolotherapy for chronic shoulder pain: a case report. Altern Ther Health Med. 2018; 24(1): 56-60.
  • Schwartz LM, Smith SW, Jones ME, Osborne BA. Do all programmed cell deaths occur via apoptosis? PNAS 1993; 90 (3): 980–984.
  • Kroemer G, Martin SJ. Caspase-independent cell death. Nature Medicine. 2005; 11 (7): 725–730.
  • Mohamed MS, Bishr MK, Almutairi FM, Ali AG. Inhibitors of apoptosis: clinical implications in cancer. Apoptosis. 2017; 22(12): 1487-1509
  • Tang HL, Tang HM, Mak KH, et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell 2012; 23(12): 2240-2252.
  • . Barros LF, Barnes K, Ingram JC, Castro J, Porras OH, Baldwin SA. Hyperosmotic shock induces both activation and translocation of glucose transporters in mammalian cells. Pflugers Arch. 2001; 442(4): 614-621.
  • Gunnink SM, Kerk SA, Kuiper BD, Alabi OD, Kuipers DP, Praamsma RC, Wrobel KE, Louters LL. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells. Biochimie. 2014; 99: 189-194.
  • Bonomini M, Pandolfi A, Di Liberato L, Di Silvestre S, Cnops Y, Di Tomo P, D’Arezzo M, Monaco MP, Giardinelli A, Di Pietro N, Devuyst O, Arduini A. L-carnitine is an osmotic agent suitable for peritoneal dialysis. Kidney Int. 2011; 80(6): 645-654.
  • Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol. 2015; 39(1):35-42.
  • Keller N, Ozmadenci D, Ichim G, Stupack D. Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol. 2018; S1084-9521(17): 30529-30533.
  • Tsapras P, Nezis IP. Caspase involvement in autophagy. Cell Death Differ. 2017; 24(8): 1369-1379.
  • Nakajima YI, Kuranaga E. Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 2017; 24(8): 1422-1430.
  • Mattson MP, Chan SL. Calcium orchestrates apoptosis. Nat Cell Biol. 2003; 5(12): 1041-1043.
  • Thomas MP, Liu X, Whangbo J, et al. Apoptosis Triggers Specific, Rapid, and Global mRNA Decay with 3’ Uridylated Intermediates Degraded by DIS3L2. Cell Rep. 2015; 11(7): 1079-1089.
  • Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017; 277(1): 76-89.
  • Palmer BF, Clegg DJ. Oxygen sensing and metabolic homeostasis. Molecular and Cellular Endocrinology 2014; 397(1-2): 51–57.
  • Heldin CH. Structural and functional studies on platelet-derived growth factor. EMBO J. 1992; 11(12): 4251– 4259.
  • Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metabolism 2002; 19 (3): 407–417.
  • Frezzetti D, Gallo M, Maiello MR, et al. VEGF as a potential target in lung cancer. Expert Opin Ther Targets 2017; 21(10): 959-966.
  • Ouyang L, Zhang K, Chen J, Wang J, Huang H. Roles of platelet-derived growth factor in vascular calcification. J Cell Physiol. 2018; 233(4): 2804-2814.
  • Gülşen MR, Uzuinay NS, Fermanli O, Çoban ZD, Öztürk D, Hamidi M, Avcu F, Güran Ş. Anti-angiogenic role of Ankaferd on chick chorioallontoic membrane model. Gülhane Medical Journal 2015; 57 (3): 274-279.
  • Jedelská J, Strehlow B, Bakowsky U, Aigner A, Höbel S, Bette M, Roessler M, Franke N, Teymoortash A, Werner JA, Eivazi B, Mandic R. The chorioallantoic membrane assay is a promising ex vivo model system for the study of vascular anomalies. In Vivo 2013; 27(6): 701-705.
  • Larger E, Marre M, Corvol P, Gasc JM. Hyperglycemia-induced defects in angiogenesis in the chicken chorioallantoic membrane model. Diabetes 2004; 53(3): 752-761.
  • Jain RK. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin Oncol. 2002; 29(6 Suppl 16): 3-9.
  • Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem. 2006; 13(16): 1845-1857.
APA GÜRAN S, ÇOBAN Z, KARASİMAV Ö, DEMİRHAN S, KARAAĞAÇ N, ÖRSÇELİK A, YILDIZ Y (2018). Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. , 42 - 46. 10.26657 / gulhane.00016
Chicago GÜRAN SEFIK,ÇOBAN Zehra Dilşad,KARASİMAV Özlem,DEMİRHAN Sümeyye,KARAAĞAÇ Naci,ÖRSÇELİK AYDAN,YILDIZ Yavuz Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. (2018): 42 - 46. 10.26657 / gulhane.00016
MLA GÜRAN SEFIK,ÇOBAN Zehra Dilşad,KARASİMAV Özlem,DEMİRHAN Sümeyye,KARAAĞAÇ Naci,ÖRSÇELİK AYDAN,YILDIZ Yavuz Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. , 2018, ss.42 - 46. 10.26657 / gulhane.00016
AMA GÜRAN S,ÇOBAN Z,KARASİMAV Ö,DEMİRHAN S,KARAAĞAÇ N,ÖRSÇELİK A,YILDIZ Y Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. . 2018; 42 - 46. 10.26657 / gulhane.00016
Vancouver GÜRAN S,ÇOBAN Z,KARASİMAV Ö,DEMİRHAN S,KARAAĞAÇ N,ÖRSÇELİK A,YILDIZ Y Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. . 2018; 42 - 46. 10.26657 / gulhane.00016
IEEE GÜRAN S,ÇOBAN Z,KARASİMAV Ö,DEMİRHAN S,KARAAĞAÇ N,ÖRSÇELİK A,YILDIZ Y "Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors." , ss.42 - 46, 2018. 10.26657 / gulhane.00016
ISNAD GÜRAN, SEFIK vd. "Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors". (2018), 42-46. https://doi.org/10.26657 / gulhane.00016
APA GÜRAN S, ÇOBAN Z, KARASİMAV Ö, DEMİRHAN S, KARAAĞAÇ N, ÖRSÇELİK A, YILDIZ Y (2018). Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. Gülhane Tıp Dergisi, 60(2), 42 - 46. 10.26657 / gulhane.00016
Chicago GÜRAN SEFIK,ÇOBAN Zehra Dilşad,KARASİMAV Özlem,DEMİRHAN Sümeyye,KARAAĞAÇ Naci,ÖRSÇELİK AYDAN,YILDIZ Yavuz Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. Gülhane Tıp Dergisi 60, no.2 (2018): 42 - 46. 10.26657 / gulhane.00016
MLA GÜRAN SEFIK,ÇOBAN Zehra Dilşad,KARASİMAV Özlem,DEMİRHAN Sümeyye,KARAAĞAÇ Naci,ÖRSÇELİK AYDAN,YILDIZ Yavuz Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. Gülhane Tıp Dergisi, vol.60, no.2, 2018, ss.42 - 46. 10.26657 / gulhane.00016
AMA GÜRAN S,ÇOBAN Z,KARASİMAV Ö,DEMİRHAN S,KARAAĞAÇ N,ÖRSÇELİK A,YILDIZ Y Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. Gülhane Tıp Dergisi. 2018; 60(2): 42 - 46. 10.26657 / gulhane.00016
Vancouver GÜRAN S,ÇOBAN Z,KARASİMAV Ö,DEMİRHAN S,KARAAĞAÇ N,ÖRSÇELİK A,YILDIZ Y Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors. Gülhane Tıp Dergisi. 2018; 60(2): 42 - 46. 10.26657 / gulhane.00016
IEEE GÜRAN S,ÇOBAN Z,KARASİMAV Ö,DEMİRHAN S,KARAAĞAÇ N,ÖRSÇELİK A,YILDIZ Y "Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors." Gülhane Tıp Dergisi, 60, ss.42 - 46, 2018. 10.26657 / gulhane.00016
ISNAD GÜRAN, SEFIK vd. "Dextrose solution used for prolotherapy decreases cell viability and increases gene expressions of angiogenic and apopitotic factors". Gülhane Tıp Dergisi 60/2 (2018), 42-46. https://doi.org/10.26657 / gulhane.00016