Yıl: 2018 Cilt: 50 Sayı: 3 Sayfa Aralığı: 193 - 201 Metin Dili: İngilizce İndeks Tarihi: 13-06-2019

Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body

Öz:
Reactive oxygen species (ROS) are well-known for playing a dual role as destructive and constructive species. Indeed, ROS are engaged in many redox-governing activities of the cells for the preservation of cellular ho- meostasis. However, its overproduction has been reported to result in oxidative stress, which is considered as a deleterious process, and is involved in the damage of cell structures that causes various diseased states. This review provides a concise view on some of the current research published in this topic for an improved understanding of the key roles of ROS in diverse conditions of health and disease. Previous research demon- strated that ROS perform as potential signaling molecules to control several normal physiological functions at the cellular level. Additionally, there is a growing body of evidence supporting the role of ROS in various pathological states. The binary nature of ROS with their profitable and injurious characteristics indicates the complexities of their specific roles at a biological compartment and the difficulties in establishing convenient intervention procedures to treat ROS-related diseases.
Anahtar Kelime:

Konular: Genel ve Dahili Tıp
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Lasségue B, San Martin A, Griendling KK. Bio- chemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110: 1364-90. [CrossRef]
  • Izyumov D, Domnina L, Nepryakhina O, et al. Mitochondria as source of reactive oxygen spe- cies under oxidative stress. Study with novel mitochondria-targeted antioxidants—the “Sku- lachev-ion” derivatives. Biochemistry (Mosc) 2010; 75: 123-9. [CrossRef]
  • Cubero FJ, Nieto N. Arachidonic acid stimulates TNF production in Kupffer cells via a reac- tive oxygen species-pERK1/2-Egr1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2012; 303: G228-G39. [CrossRef]
  • Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell 2009; 36: 845-60. [CrossRef]
  • Nishikawa T, F Sato E, Choudhury T, et al. Effect of nitric oxide on the oxygen metabolism and growth of E. faecalis. J Clin Biochem Nutr 2009; 44: 178. [CrossRef]
  • Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E. Red blood cells, platelets and poly- morphonuclear neutrophils of patients with sick- le cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 2006; 132: 108-13. [CrossRef]
  • Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabi- novitch PS. Mitochondrial oxidative stress in ag- ing and healthspan. Longev Healthspan 2014; 3: 6. [CrossRef]
  • Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev 2016; 2016: 1245049. [CrossRef]
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24: 981-90. [CrossRef]
  • Scandalios JG. The rise of ROS. Trends Biochem Sci 2002; 27: 483-6. [CrossRef]
  • Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hy- pertens 2000; 18: 655-73. [CrossRef]
  • Qin B, Cartier L, Dubois-Dauphin M, Li B, Ser- rander L, Krause KH. A key role for the microg- lial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging 2006; 27: 1577-87. [CrossRef]
  • Krause K-H, Bedard K, editors. NOX enzymes in immuno-inflammatory pathologies. Semin Im- munopathol 2008; 30: 193-4. [CrossRef]
  • Breher F. Stretching bonds in main group ele- ment compounds-Borderlines between biradi- cals and closed-shell species. Coord Chem Rev 2007; 251: 1007-43. [CrossRef]
  • Pines D. Electron interaction in metals. Solid state physics. Elsevier; 1955.p.367-450.
  • Wagner M, Merkt U, Chaplik A. Spin-singlet– spin-triplet oscillations in quantum dots. Physical Review B 1992; 45: 1951. [CrossRef]
  • Dougherty DA. Spin control in organic molecules. Acc Chem Res 1991; 24: 88-94. [CrossRef] Fletcher L, Hudson H. Impulsive phase flare en- ergy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys J 2008; 675: 1645. [CrossRef]
  • Ishida K, Mukuda H, Kitaoka Y, et al. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 1998; 396: 658-60. [CrossRef]
  • Wasielewski MR, O’Neil MP, Lykke KR, Pellin MJ, Gruen DM. Triplet states of fullerenes C60 and C70. Electron paramagnetic resonance spectra, photophysics, and electronic structures. J Am Chem Soc 1991; 113: 2774-6. [CrossRef]
  • Harvey JN, Aschi M, Schwarz H, Koch W. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting poten- tial energy surfaces. Theor Chem Acc 1998; 99: 95-9. [CrossRef]
  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and pro- grammed cell death. Bioessays 2006; 28: 1091- 101. [CrossRef]
  • Raballand V, Benedikt J, Wunderlich J, Von Keudell A. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms. J Phys D Appl Phys 2008; 41: 115207. [CrossRef]
  • Kellogg EW, Fridovich I. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 1975; 250: 8812-7.
  • Guzik TJ, West NE, Black E, et al. Vascular super- oxide production by NAD (P) H oxidase associa- tion with endothelial dysfunction and clinical risk factors. Circ Res 2000; 86: E85-90. [CrossRef]
  • Kładna A, Aboul-Enein HY, Kruk I, Lichszteld K, Michalska T. Scavenging of reactive oxygen spe- cies by some nonsteroidal anti-inflammatory drugs and fenofibrate. Biopolymers 2006; 82: 99-105. [CrossRef]
  • Kandaz M, Ertekin MV, Erdemci B, et al. The effects of zinc sulfate on the levels of some ele- ments and oxidative stress occurring in lenses of rats exposed to total cranium radiotherapy. Eurasian J Med 2009; 41: 110-5.
  • Cheung CY, McCartney SJ, Anseth KS. Synthesis of polymerizable superoxide dismutase mimet- ics to reduce reactive oxygen species damage in transplanted biomedical devices. Adv Funct Ma- ter 2008; 18: 3119-26. [CrossRef]
  • Wan J, Winn LM. In utero–initiated cancer: The role of reactive oxygen species. Birth Defects Res C Embryo Today 2006; 78: 326-32. [CrossRef]
  • Aboul-Enein HY, Kruk I, Kładna A, Lichszteld K, Michalska T. Scavenging effects of phenolic com- pounds on reactive oxygen species. Biopolymers 2007; 86: 222-30. [CrossRef]
  • Fantel AG. Reactive oxygen species in develop mental toxicity: review and hypothesis. Teratol- ogy 1996; 53: 196-217. [CrossRef]
  • Jimenez-Del-Rio M, Suarez-Cede-o G, Velez- Pardo C. Using paraquat to generate anion free radicals and hydrogen peroxide in in vitro: An- tioxidant effect of vitamin E. Biochem Mol Biol Educ 2010; 38: 104-9. [CrossRef] Yildirim S, Yildirim A, Dane S, Aliyev E, Yigitoglu R. Dose-dependent protective effect of L-carnitine on oxidative stress in the livers of hyperthyroid rats. Eurasian J Med 2013; 45: 1-6. [CrossRef]
  • Zeeshan HM, Lee GH, Kim HR, Chae HJ. Endo plasmic Reticulum Stress and Associated ROS. Int J Mol Sci 2016; 17: 327. [CrossRef]
  • Ahmed A, Tollefsbol T. Telomeres and telom- erase: basic science implications for aging. J Am Geriatr Soc 2001; 49: 1105-9. [CrossRef]
  • Ortuño-Sahagún D, Pallàs M, Rojas-Mayorquín AE. Oxidative Stress in Aging: Advances in Pro- teomic Approaches. Oxid Med Cell Longev 2014; 2014: 573208.
  • Jin K. Modern Biological Theories of Aging. Aging Dis 2010; 1: 72-4.
  • Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nu- trient-sensing TOR pathway in aging. Cell Metab 2010; 11: 453-65. [CrossRef]
  • Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012; 11: 230-41. [CrossRef]
  • Park I, Hwang J, Kim Y, Ha J, Park O. Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Ann N Y Acad Sci 2006; 1091: 102-9. [CrossRef]
  • Sandström ME, Zhang SJ, Bruton J, et al. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J Physiol 2006; 575: 251-62. [CrossRef]
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298-300. [CrossRef]
  • Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc 1972; 20: 145-7. [CrossRef]
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxi- dants, and aging. Cell 2005; 120: 483-95. [CrossRef]
  • Sohal RS, Sohal BH. Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev 1991; 57: 187-202. [CrossRef]
  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43: 477-503. [CrossRef]
  • Lambert AJ, Boysen HM, Buckingham JA, et al. Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 2007; 6: 607-18. [CrossRef]
  • Hekimi S LJ, Wen Y. Taking a “good” look at free radicals in the aging process. Trends Cell Biol 2011; 21: 569-76. [CrossRef]
  • Chen JH, Hales CN, Ozanne SE. DNA damage, cellu- lar senescence and organismal ageing: causal or correla- tive? Nucleic Acids Res 2007; 35: 7417-28. [CrossRef]
  • Howes RM. The free radical fantasy. Ann N Y Acad Sci 2006; 1067: 22-6. [CrossRef]
  • Pérez VI, Van Remmen H, Bokov A, Epstein CJ, Vijg J, Richardson A. The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 2009; 8: 73-5. [CrossRef]
  • Andziak B, O’Connor TP, Qi W, et al. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 2006; 5: 463-71. [CrossRef] Lapointe J, Hekimi S. Early mitochondrial dys- function in long-lived Mclk1+/-mice. J Biol Chem 2008; 283: 26217-27. [CrossRef]
  • Yang W, Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 2010; 8: e1000556. [CrossRef]
  • Van Raamsdonk JM, Hekimi S. Reactive oxygen species and aging in Caenorhabditis elegans: causal or casual relationship? Antioxid Redox Sig- nal 2010; 13: 1911-53. [CrossRef]
  • Sena LA, Chandel NS. Physiological roles of mi tochondrial reactive oxygen species. Mol Cell 2012; 48: 158-67. [CrossRef]
  • Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007; 449: 819-26. [CrossRef]
  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47-95. [CrossRef]
  • Alfadda AA, Sallam RM. Reactive Oxygen Spe- cies in Health and Disease. J Biomed Biotechnol 2012; 2012: 936486.
  • Fang FC. Antimicrobial reactive oxygen and ni- trogen species: concepts and controversies. Nat Rev Microbiol 2004; 2: 820-32. [CrossRef]
  • Dahlgren C, Karlsson A. Respiratory burst in human neutrophils. J Immunol Methods 1999; 232: 3-14. [CrossRef]
  • Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood 2008; 112: 935-45. [CrossRef]
  • Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol 2005; 77: 598-625. [CrossRef]
  • Janeway CA, Travers P, Walport M, Shlomchik MJ. The major histocompatibility complex and its functions. New York: Garland Science; 2001.
  • Hamuro J, Murata Y, Suzuki M, Takatsuki F, Suga T. The triggering and healing of tumor stromal inflammatory reactions regulated by oxidative and reductive macrophages. Gann Monograph on Cancer Research. 1999; 48: 153-64.
  • Sorbara MT, Girardin SE. Mitochondrial ROS fuel the inflammasome. Cell Res 2011; 21: 558. [CrossRef]
  • Salminen A, Ojala J, Kaarniranta K, Kauppinen A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 2012; 69: 2999-3013. [CrossRef]
  • Tschopp J. Mitochondria: sovereign of inflammation? Eur J Immunol 2011; 41: 1196-202. [CrossRef]
  • Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activa- tion. Nature 2011; 469: 221-5. [CrossRef]
  • Brieger K, Schiavone S, Miller Jr FJ, Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly 2012; 142: w13659. [CrossRef]
  • Salminen A, Kaarniranta K, Kauppinen A. Inflam- maging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 2012; 4:166. [CrossRef]
  • Vignais P. The superoxide-generating NADPH oxi- dase: structural aspects and activation mechanism. Cell Mol Life Sci 2002; 59: 1428-59. [CrossRef]
  • Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol 2003; 15: 578-84. [CrossRef]
  • Mauch L, Lun A, O’Gorman MR, et al. Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin Chem 2007; 53: 890-6. [CrossRef]
  • Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature 2010; 468: 232-43. [CrossRef]
  • 76 Attwell D, Gibb A. Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci 2005; 6: 841. [CrossRef]
  • Allaman I, Bélanger M, Magistretti PJ. Astrocyte–neu- ron metabolic relationships: for better and for worse. Trends Neurosci 2011; 34: 76-87. [CrossRef]
  • Campagna-Slater V, Weaver DF. Molecular modelling of the GABA A ion channel protein. J Mol Graph Model 2007; 25: 721-30. [CrossRef]
  • Bardaweel SK, Alzweiri M, Ishaqat AA. D-Serine in neurobiology: CNS neurotransmission and neuromodulation. Can J Neurol Sci 2014; 41: 164-76. [CrossRef]
  • Howarth C GPaAD. Updated energy budgets for neural computation in the neocortex and cerebellum J Cereb Blood Flow Metab 2012; 32: 1222–32. [CrossRef]
  • Accardi MV, Daniels BA, Brown PM, Fritschy JM, Tyagarajan SK, Bowie D. Mitochondrial reactive oxygen species regulate the strength of inhibi- tory GABA-mediated synaptic transmission. Nat Commun 2014; 5: 3168. [CrossRef]
  • Smith RA HR, Cochemé HM and Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci 2012; 33: 341-52. [CrossRef]
  • Jones QR, Warford J, Rupasinghe HV, Robertson GS. Target-based selection of flavonoids for neu- rodegenerative disorders. Trends Pharmacol Sci 2012; 33: 602-10. [CrossRef]
  • Plante M, De Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 1994; 62: 387-93. [CrossRef]
  • Chen SJ AJ, Duan YG and Haidl G. Influence of reac tive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet 2013; 288: 191-9. [CrossRef]
  • Fisher HM, Aitken RJ. Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metab- olites. J Exp Zool 1997; 277: 390-400. [CrossRef]
  • Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health 2014; 32: 1-17. [CrossRef]
  • Aitken RJ. The human spermatozoon–a cell in crisis? J Reprod Fertil 1999; 115: 1-7. [CrossRef]
  • de Lamirande E, Lamothe G, Villemure M. Con- trol of superoxide and nitric oxide formation during human sperm capacitation. Free Radic Biol Med 2009; 46: 1420-7. [CrossRef]
  • O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammali- an sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med 2006; 41: 528-40. [CrossRef]
  • de Lamirande E, O’Flaherty C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 2008; 1784: 106-15. [CrossRef]
  • Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update 2008; 14: 647-57. [CrossRef]
  • Wathes DC, Abayasekara DR, Aitken RJ. Polyun- saturated fatty acids in male and female reproduc- tion. Biol Reprod 2007; 77: 190-201. [CrossRef]
  • Calamera J BM, Ollero M, Alvarez J, Doncel GF. Superoxide dismutase content and fatty acid composition in subsets of human spermatozoa from normozoospermic, asthenozoospermic, and polyzoospermic semen samples. Mol Re- prod Dev 2003; 66: 422-30. [CrossRef]
  • Khosrowbeygi A, Zarghami N. Fatty acid compoSition of human spermatozoa and seminal plasma levels of oxidative stress biomarkers in subfertile males. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 117-21. [CrossRef]
  • Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of re- sidual cytoplasm by human spermatozoa: corre- lation with biochemical markers of the cytoplas- mic space, oxidative stress, and sperm function. J Androl 1996; 17: 276-87.
  • Aziz N, Saleh RA, Sharma RK, et al. Novel asso- ciation between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil Steril 2004; 81: 349-54. [CrossRef]
  • Sánchez R, Sepúlveda C, Risopatrón J, Villegas J, Giojalas LC. Human sperm chemotaxis depends on critical levels of reactive oxygen species. Fertil Steril 2010; 93: 150-3. [CrossRef]
  • Ford WC. Regulation of sperm function by reactive oxygen species. Hum Reprod Update 2004; 10: 387-99. [CrossRef]
  • Walczak-Jedrzejowska R, Wolski JK, Slowikows- ka-Hilczer J. The role of oxidative stress and an- tioxidants in male fertility. Cent European J Urol 2013; 66: 60-7. [CrossRef]
  • Safarinejad MR. Infertility among couples in a population-based study in Iran: prevalence and associated risk factors. Int J Androl 2008; 31: 303-14. [CrossRef]
  • Lanzafame FM, La Vignera S, Vicari E, Calogero AE. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed On- line 2009; 19: 638-59. [CrossRef]
  • Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the signifi- cance of oral antioxidant therapy. Hum Reprod 2011; 26: 1628-40. [CrossRef]
  • Choudhary R, Chawala V, Soni N, Kumar J, Vyas R. Oxidative stress and role of antioxidants in male infertility. Pak J Physiol 2010; 6: 54-9.
  • Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas AJ. Effect of cigarette smoking on lev- els of seminal oxidative stress in infertile men: a prospective study. Fertil Steril 2002; 78: 491-9. [CrossRef]
  • Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R. Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol 2012; 34: 298-307. [CrossRef]
  • Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human re- production. Fertil Steril 2003; 79: 829-43. [CrossRef]
  • World Health Organization, Department of Reproductive Health and Research. WHO labora- tory manual for the examination and processing of human semen. 2010.p.271.
  • Nandipati K, Pasqualotto F, Thomas A, Agarwal A. Relationship of interleukin-6 with semen charac- teristics and oxidative stress in vasectomy reversal patients. Andrologia 2005; 37: 131-4. [CrossRef]
  • Bansal AK, Bilaspuri GS. Impacts of Oxidative Stress and Antioxidants on Semen Functions. Vet Med Int 2011; 2011: 7.
  • Saleh R, Agarwal A. Oxidative stress and male in- fertility: from research bench to clinical practice. J Androl 2002; 23: 737-52.
  • Hazout A, Menezo Y, Madelenat P, Yazbeck C, Selva J, Cohen-Bacrie P. [Causes and clinical im- plications of sperm DNA damages]. Gynecol Obstet Fertil 2008; 36: 1109-17. [CrossRef]
  • Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem 2001; 8: 851-62. [CrossRef]
  • Shiraishi K, Matsuyama H, Takihara H. Pathophys- iology of varicocele in male infertility in the era of assisted reproductive technology. Int J Urol 2012; 19: 538-50. [CrossRef]
  • Will MA SJ, Fode M, Sonksen J, Christman GM and Ohl D. The great debate: varicocele treat- ment and impact on fertility. Fertil Steril 2011; 95: 841-52. [CrossRef]
  • De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile Phone Radiation Induces Reactive Oxygen Species Production and DNA Damage in Hu- man Spermatozoa In Vitro. PLoS One 2009; 4: e6446. [CrossRef]
  • Jurasović J, Cvitković P, Pizent A, Čolak B, Telišman S. Semen quality and reproductive en- docrine function with regard to blood cadmium in Croatian male subjects. Biometals 2004; 17: 735-43. [CrossRef]
  • Agarwal A, Prabakaran SA. Mechanism, measurement and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol 2005; 43: 963.
  • Saalu L. The incriminating role of reactive oxygen spe- cies in idiopathic male infertility: an evidence based evaluation. Pak J Biol Sci 2010; 13: 413-22. [CrossRef]
  • Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res 2009; 1297: 357-67.
  • Tremellen K. Oxidative stress and male infertili- ty—a clinical perspective. Hum Reprod Update 2008; 14: 243-58. [CrossRef]
  • Zribi N, Chakroun NF, Elleuch H, et al. Sperm DNA fragmentation and oxidation are indepen- dent of malondialdheyde. Reprod Biol Endocri- nol 2011; 9: 47. [CrossRef]
  • Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet 2010; 27: 3-12. [CrossRef]
  • Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl 2011; 13: 36-42. [CrossRef]
  • Du Plessis S, McAllister D, Luu A, Savia J, Agarwal A, Lampiao F. Effects of H2O2 exposure on hu- man sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia 2010; 42: 206-10. [CrossRef]
  • Vignera S, Condorelli RA, Vicari E, D’Agata R, Calogero AE. Effects of the exposure to mobile phones on male reproduction: a review of the literature. J Androl 2012; 33: 350-6. [CrossRef]
  • Wang Y, Sharma RK, Falcone T, Goldberg J, AgarWal A. Importance of reactive oxygen species in the peritoneal fluid of women with endometrio- sis or idiopathic infertility. Fertil Steril 1997; 68: 826-30. [CrossRef]
  • Attaran M, Pasqualotto E, Falcone T, et al. ThE effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med 1999; 45: 314-20.
  • Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 2001; 7: 175-89. [CrossRef]
  • Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Repro- duction 2002; 123: 479-86. [CrossRef]
  • Sharma RK, Agarwal A. Role of reactive oxygen species in gynecologic diseases. Reprod Med Biol 2004; 3: 177-99. [CrossRef]
  • Vural P, Akgül C, Yildirim A, Canbaz M. Antioxidant defence in recurrent abortion. Clin Chim Acta 2000; 295: 169-77. [CrossRef]
  • Woods JR, Plessinger MA, Miller RK. Vitamins C and E: missing links in preventing preterm pre- mature rupture of membranes? Am J Obstet Gynecol 2001; 185: 5-10. [CrossRef]
  • Bilodeau JF, Hubel CA. Current concepts in the use of antioxidants for the treatment of pre- eclampsia. J Obstet Gynaecol Can 2003; 25: 742-50. [CrossRef] Ruder EH, Hartman TJ, Goldman MB. Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol 2009; 21: 219. [CrossRef]
  • Augood C, Duckitt K, Templeton A. Smoking and female infertility: a systematic review and meta-analysis. Hum Reprod 1998; 13: 1532-9. [CrossRef]
  • Safford SE, Oberley TD, Urano M, St Clair DK. Suppression of fibrosarcoma metastasis by el- evated expression of manganese superoxide dismutase. Cancer Res 1994; 54: 4261-5.
  • St Clair DK, Wan XS, Oberley TD, Muse KE, St Clair WH. Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol Car- cinog 1992; 6: 238-42. [CrossRef]
  • Yuan D, Huang S, Berger E, et al. Kupffer Cell Derived Tnf Triggers Cholangiocellular Tumori- genesis through JNK due to Chronic Mitochon- drial Dysfunction and ROS. Cancer Cell 2017; 31: 771-89. [CrossRef]
  • Yang JQ, Li S, Domann FE, Buettner GR, Oberley LW. Superoxide generation in v-Ha-ras-trans- duced human keratinocyte HaCaT cells. Mol Carcinog 1999; 26: 180-8. [CrossRef]
  • Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibro- blasts. Science 1997; 275: 1649-52. [CrossRef]
  • Sohn J, Rudolph J. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/re- duction. Biochemistry. 2003; 42: 10060-70. [CrossRef]
  • Ogrunc M, Di Micco R, Liontos M, et al. Oncogene-induced reactive oxygen species fuel hyperprolif- eration and DNA damage response activation. Cell Death Differ 2014; 21: 998-1012. [CrossRef]
  • Li TK, Chen AY, Yu C, Mao Y, Wang H, Liu LF. Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev 1999; 13: 1553-60. [CrossRef]
  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med 2005; 11: 1306-13. [CrossRef]
  • Greer EL, Brunet A. FOXO transcription factors in ageing and cancer. Acta Physiol (Oxf) 2008; 192: 19-28. [CrossRef]
  • Cao L, Xu X, Cao LL, et al. Absence of full-length Brca1 sensitizes mice to oxidative stress and carcinogen-in- duced tumorigenesis in the esophagus and forestom- ach. Carcinogenesis 2007; 28: 1401-7. [CrossRef]
  • Gorrini C, Baniasadi PS, Harris IS, et al. BRCA1 interacts with Nrf2 to regulate antioxidant sig- naling and cell survival. J Exp Med 2013; 210: 1529-44. [CrossRef]
  • Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 2014; 14: 709-21. [CrossRef]
  • Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lin- dahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 2014; 6: 221ra15. [CrossRef]
  • Deghan Manshadi S, Ishiguro L, Sohn KJ, et al. Folic acid supplementation promotes mammary tu- mor progression in a rat model. PLoS One 2014; 9: e84635. [CrossRef]
  • Ebbing M, Bonaa KH, Nygard O, et al. Cancer inci- dence and mortality after treatment with folic acid and vitamin B12. JAMA 2009; 302: 2119-26. [CrossRef]
  • Goodman GE, Thornquist MD, Balmes J, et al. The Beta-Carotene and Retinol Efficacy Trial: in- cidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J Natl Cancer Inst 2004; 96: 1743-50. [CrossRef]
  • Klein EA, Thompson IM, Jr., Tangen CM, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011; 306: 1549-56. [CrossRef]
  • Piskounova E, Agathocleous M, Murphy MM, et al. Oxi- dative stress inhibits distant metastasis by human mela- noma cells. Nature 2015; 527: 186-91. [CrossRef]
APA BARDAWEEL S, GÜL M, ALZWEIRI M, ISHAGAT A, ALSALAMAT H, BASHATWAH R (2018). Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. , 193 - 201.
Chicago BARDAWEEL Sanaa K.,GÜL MUSTAFA,ALZWEIRI Muhammad,ISHAGAT Aman,ALSALAMAT Husam A. ALSalamat,BASHATWAH Rasha M. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. (2018): 193 - 201.
MLA BARDAWEEL Sanaa K.,GÜL MUSTAFA,ALZWEIRI Muhammad,ISHAGAT Aman,ALSALAMAT Husam A. ALSalamat,BASHATWAH Rasha M. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. , 2018, ss.193 - 201.
AMA BARDAWEEL S,GÜL M,ALZWEIRI M,ISHAGAT A,ALSALAMAT H,BASHATWAH R Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. . 2018; 193 - 201.
Vancouver BARDAWEEL S,GÜL M,ALZWEIRI M,ISHAGAT A,ALSALAMAT H,BASHATWAH R Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. . 2018; 193 - 201.
IEEE BARDAWEEL S,GÜL M,ALZWEIRI M,ISHAGAT A,ALSALAMAT H,BASHATWAH R "Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body." , ss.193 - 201, 2018.
ISNAD BARDAWEEL, Sanaa K. vd. "Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body". (2018), 193-201.
APA BARDAWEEL S, GÜL M, ALZWEIRI M, ISHAGAT A, ALSALAMAT H, BASHATWAH R (2018). Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian Journal of Medicine, 50(3), 193 - 201.
Chicago BARDAWEEL Sanaa K.,GÜL MUSTAFA,ALZWEIRI Muhammad,ISHAGAT Aman,ALSALAMAT Husam A. ALSalamat,BASHATWAH Rasha M. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian Journal of Medicine 50, no.3 (2018): 193 - 201.
MLA BARDAWEEL Sanaa K.,GÜL MUSTAFA,ALZWEIRI Muhammad,ISHAGAT Aman,ALSALAMAT Husam A. ALSalamat,BASHATWAH Rasha M. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian Journal of Medicine, vol.50, no.3, 2018, ss.193 - 201.
AMA BARDAWEEL S,GÜL M,ALZWEIRI M,ISHAGAT A,ALSALAMAT H,BASHATWAH R Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian Journal of Medicine. 2018; 50(3): 193 - 201.
Vancouver BARDAWEEL S,GÜL M,ALZWEIRI M,ISHAGAT A,ALSALAMAT H,BASHATWAH R Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian Journal of Medicine. 2018; 50(3): 193 - 201.
IEEE BARDAWEEL S,GÜL M,ALZWEIRI M,ISHAGAT A,ALSALAMAT H,BASHATWAH R "Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body." Eurasian Journal of Medicine, 50, ss.193 - 201, 2018.
ISNAD BARDAWEEL, Sanaa K. vd. "Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body". Eurasian Journal of Medicine 50/3 (2018), 193-201.