Yıl: 2018 Cilt: 4 Sayı: 1 Sayfa Aralığı: 1632 - 1647 Metin Dili: İngilizce İndeks Tarihi: 08-08-2019

NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING

Öz:
The present study is focused on investigation of heat transfer from a porous plate by cooling of air and surfacewith transpiration cooling. Effects of Reynolds number of hot air (Re= 3035, 3200, 3300, 3580), effects of flowrate of water as a coolant (ṁ water = 0.000083, 0.000116, 0.000166, 0.000249 kg/s) on local wall temperature andcooling efficiency of porous flat and the system inside a rectangular channel with air as a hot gas stream andwater as a coolant were investigated numerically. In this study; different from the literature, transpiration coolingwas used as a cooling mechanism of air. It was observed from the results that increasing Reynolds numbercauses an increase on surface temperature and a decrease on cooling efficiency of porous plate and system.Increase of Reynolds number from Re=3035 to 9430 causes a decrease of efficiency of the system of 13.7%.Increasing water flow rate nine times causes not only a decrease on average surface temperature of 1.1% but alsoan increase of 6.5% on efficiency of porous plate and an increase of 19.1% on cooling efficiency of the system.Numerical results prepared by RNG k-ε turbulence model generally have a good approximation withexperimental results.
Anahtar Kelime:

Konular: Fizik, Uygulamalı
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Polezhaev, J. The transpiration cooling for blades of high temperatures gas turbine. Energ. Convers Manage, 1997, 38, 1123-1133.
  • Trevino, C.; Medina, A. Analysis of transpiration cooling of a thin porous plate in a hot laminar convective flow. Eur. J. Mech., 1997, 2, 245-260.
  • Andoh, Y.H.; Lips, B. Prediction of porous walls thermal protection by effusion or transpiration cooling An analytic approach. Appl. Therm. Eng., 2003, 23, 1947-1958.
  • Cerri, G.; Giovannelli, A.; Battisti, L.; Fedrizzi, R. Advances in effusive cooling techniques of gas turbines. Appl. Therm. Eng., 2007, 27, 692-698.
  • Liu, Y.Q.; Xiong, Y.B.; Jiang, P.X.; Wang, Y.P.; Sun, J.G. Effects of local geometry and boundary conditions on transpiration cooling. Int. J. Heat Mass Tran., 2013, 62, 362-372.
  • He, F.; Wang, J. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energ. Convers Manage, 2014, 80, 591-597.
  • Huang, Z.; Zhu, Y.; Xiong Y.; Jiang P. Investigation of transpiration cooling for sintered metal porous struts in supersonic flow. Appl. Therm. Eng., 2014, 70, 240-249.
  • Shi, J.; Wang, J. Optimized structure of two layer porous media with genetic algorithm for transpiration cooling. Int. J. Therm. Sci., 2008, 47, 1595-1601.
  • Song, C.H.; Lee, D.Y.; Sung, T.R. Cooling enhancement in an air cooled finned heat exchanger by thin water film evaporation. . Int. J. Heat Mass Tran. 2002, 46, 1241-1249.
  • Leu, J.S.; Jang, J.Y.; Chou, W.C. Convection heat transfer along a vertical heated plate with film evaporation in a non-Darcian porous medium. Int. J. Heat Mass Tran., 2009, 52, 5447-5450.
  • Hsyan, S.M.; Jer, H.M.; Kuang, C.C. A study of the liquid evaporation with Darcian resistance effect on mixed convection in porous media. Int. Commun. Heat Mass, 2005, 32, 685-694.
  • Maity, S. Thermocapillary flow of thin liquid film over a porous stretching sheet in presence of suction/injection. Int. J. Heat Mass Tran., 2014, 70, 819-826.
  • Xin, C.; Rao, Z.; You, X.; Song, Z.; Han, D. Numerical Investigation of Vapor-liquid heat and mass transfer in porous media. Energ. Convers Manage, 2014, 78, 1-7.
  • Sun, Y.; Zhang, L.; Xu, H.; Zhong, X. Flow boiling enhancement of FC-72 from microporous surface in mini channels. Exp. Therm. and Fluid Sci., 2011, 35, 1418-1426.
  • Jiang, P.X.; Yu, L.; Sun, J.G.; Wang, J. Experimental and numerical investigation of convection heat transfer in transpiration cooling. Appl. Therm. Eng.,, 2004, 24, 1271-1289.
  • Liu, Y.Q.; Jiang, P.X.; Jin, S.S.; Sun, J.G. Transpiration cooling of a nose cone by various foreign gases. Int. J. Heat Mass Tran., 2010, 53, 5364-5372.
  • Liu, Y.Q.; Jiang, P.X.; Xiong, Y.B; Wang, Y.P. Experimental and numerical investigation of transpiration for sintered porous flat plates. Appl. Therm. Eng., 2013, 50, 997-1007.
  • Arai, M.; Suidzu, T. Porous ceramic coating for transpiration cooling of gas turbine blade. J. Therm. Spray Tech., 2012, 22, 690-698.
  • He, F.; Wang, J.; Xu, L. Wang X., Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng., 2013, 58,173-180.
  • Wang, j.; Zhao, L.; Wang, X.; Ma, J.; Lin, J. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant. . Int. J. Heat Mass Tran., 2014, 75, 442-449.
  • Tsai, G.; Lin, Y.C.; Wang, H.W.; Lin, Y.F.; Su, Y.C.; Yang, T.J. Cooling transient in a sudden-expansion channel with varied rates of wall transpiration. Int. J. Heat Mass Tran., 2009, 52, 5990-5999.
  • Langener, T.; Wolserdorf, J.; Selzer, M.; Hald, H. Experimental investigations cooling applied to C/C material. Int. J. Therm. Sci., 2012, 54, 70-81.
  • Zhao, L.; Wang, J.; Ma, J.; Lin, J.; Peng, J.; Qu, D.; Chen, L. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model. Int. J. Therm. Sci., 2014, 84, 207-213.
  • Tsai, Y.Y; Lee, C.H. Experimental study of evaporative heat transfer in sintered powder structure at low superheat levels. Exp. Therm. Fluid Sci., 2014, 52, 230-238.
  • Tsai, Y.Y; Lee, C.H. Effect of sintered structural parameters on reducing the superheat level in heat pipe evaporators. Int. J. Therm. Sci., 2014, 74, 225-234.
  • He, S.; Guan, Z.; Gurgenci, H.; Hooman, K.; Lu, Y.; Alkhedhair, A.M. Experimental study of film media used for evaporative pre-cooling air. Energ. Convers Manage, 2014, 87, 874-884.
  • Mills, A.F., Mass Transfer; 2nd ed., Prentica-Hall Inc.: New Jersey, 2001; pp. 153-169.
  • Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer; 4th ed., McGrew-Hill Education: New York, 2011; pp. 465-508.
APA KILIÇ M (2018). NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. , 1632 - 1647.
Chicago KILIÇ M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. (2018): 1632 - 1647.
MLA KILIÇ M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. , 2018, ss.1632 - 1647.
AMA KILIÇ M NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. . 2018; 1632 - 1647.
Vancouver KILIÇ M NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. . 2018; 1632 - 1647.
IEEE KILIÇ M "NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING." , ss.1632 - 1647, 2018.
ISNAD KILIÇ, M.. "NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING". (2018), 1632-1647.
APA KILIÇ M (2018). NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering, 4(1), 1632 - 1647.
Chicago KILIÇ M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering 4, no.1 (2018): 1632 - 1647.
MLA KILIÇ M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering, vol.4, no.1, 2018, ss.1632 - 1647.
AMA KILIÇ M NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering. 2018; 4(1): 1632 - 1647.
Vancouver KILIÇ M NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering. 2018; 4(1): 1632 - 1647.
IEEE KILIÇ M "NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING." Journal of Thermal Engineering, 4, ss.1632 - 1647, 2018.
ISNAD KILIÇ, M.. "NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING". Journal of Thermal Engineering 4/1 (2018), 1632-1647.