Yıl: 2018 Cilt: 4 Sayı: 3 Sayfa Aralığı: 1912 - 1925 Metin Dili: İngilizce İndeks Tarihi: 16-08-2019

A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION

Öz:
This paper aims to study numerically the laminar convective heat transfer of ionized water flow insiderectangular heat sinks with periodic expansion-constriction cross-section; each heat sink consists of parallelmicrochannels system with 4 mm wide and 0.1 mm deep in constant cross-section segment. Two-dimensionallaminar numerical simulations, based on Navier-Stoks equations and energy equation, are obtained under the sameboundary conditions for different microchannels. In this study, the heat transfer and pressure drop insidemicrochannels with cross-section (cylindrical grooves and triangular cavities) are compared with that of simplesmooth microchannel at Reynolds number ranging from 150-1500; an increase in pressure drop of 44% for allmicrochannels is observed with Reynolds number increasing. The obtained results indicate an enhancement inNusselt number for all microchannels at all Reynolds number values with a maximum enhancement of 36%, theseameliorated thermal parameters attribute to enhance the heat transfer efficiency of proposed microchannels. Whichimprove the effect of periodic expansion-constriction cross-section on the heat transfer performance formicroelectromechanical systems (MEMS) cooling phenomena.
Anahtar Kelime:

Konular: Fizik, Uygulamalı
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Berlin, A. A., & Gabriel, K. J. (1997). Distributed MEMS: New challenges for computation. IEEE Computational Science and Engineering, 4(1), 12-16.
  • Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron device letters, 2(5), 126-129.
  • Samalam, V. K. (1989). Convective heat transfer in microchannels. Journal of Electronic Materials, 18(5), 611- 617.
  • Peng, X. F., Peterson, G. P., & Wang, B. X. (1994). Heat transfer characteristics of water flowing through microchannels. Experimental Heat Transfer An International Journal, 7(4), 265-283.
  • Peng, X. F., & Peterson, G. P. (1996). Convective heat transfer and flow friction for water flow in microchannel structures. International journal of heat and mass transfer, 39(12), 2599-2608.
  • Li, J., & Peterson, G. P. (2005). Boiling nucleation and two-phase flow patterns in forced liquid flow in microchannels. International journal of heat and mass transfer, 48(23-24), 4797-4810.
  • Margot, X., Hoyas, S., Gil, A., & Patouna, S. T. A. V. R. O. U. L. A. (2012). Numerical modelling of cavitation: validation and parametric studies. Engineering Applications of Computational Fluid Mechanics, 6(1), 15-24.
  • Sheikholeslami, M., Vajravelu, K., & Rashidi, M. M. (2016). Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. International Journal of Heat and Mass Transfer, 92, 339-348.
  • Sheikholeslami, M., Rashidi, M. M., & Ganji, D. D. (2015). Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Computer Methods in Applied Mechanics and Engineering, 294, 299-312.
  • Sheikholeslami, M., Rashidi, M. M., & Ganji, D. D. (2015). Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Computer Methods in Applied Mechanics and Engineering, 294, 299-312.
  • Farhanieh, B., Herman, Č., & Sundén, B. (1993). Numerical and experimental analysis of laminar fluid flow and forced convection heat transfer in a grooved duct. International journal of heat and mass transfer, 36(6), 1609- 1617.
  • Qu, W., & Mudawar, I. (2002). Analysis of three-dimensional heat transfer in micro-channel heat sinks. International Journal of heat and mass transfer, 45(19), 3973-3985.
  • Chai, L., Xia, G., Zhou, M., Li, J., & Qi, J. (2013). Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers. Applied Thermal Engineering, 51(1-2), 880-889.
  • Weilin, Q., Mala, G. M., & Dongqing, L. (2000). Pressure-driven water flows in trapezoidal silicon microchannels. International journal of heat and mass transfer, 43(3), 353-364..
  • Ghaedamini, H., Lee, P. S., & Teo, C. J. (2013). Developing forced convection in converging–diverging microchannels. International Journal of Heat and Mass Transfer, 65, 491-499.
  • Gong, L., Kota, K., Tao, W., & Joshi, Y. (2011). Parametric numerical study of flow and heat transfer in microchannels with wavy walls. Journal of Heat Transfer, 133(5), 051702.
  • Zheng, Z., Fletcher, D. F., & Haynes, B. S. (2013). Laminar heat transfer simulations for periodic zigzag semicircular channels: chaotic advection and geometric effects. International Journal of Heat and Mass Transfer, 62, 391-401.
  • Liu, Y., Cui, J., Jiang, Y. X., & Li, W. Z. (2011). A numerical study on heat transfer performance of microchannels with different surface microstructures. Applied Thermal Engineering, 31(5), 921-931.
  • Xia, G., Chai, L., Zhou, M., & Wang, H. (2011). Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities. International Journal of Thermal Sciences, 50(3), 411-419.
  • Xia, G., Chai, L., Wang, H., Zhou, M., & Cui, Z. (2011). Optimum thermal design of microchannel heat sink with triangular reentrant cavities. Applied Thermal Engineering, 31(6-7), 1208-1219.
  • Chai, L. Xia,G.D. Wang,L. Zhou, M.Z and Cui, Z.Z., Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections, Int. J. Heat Mass Trans., 2013 62,741–751.
  • Gururatana, S. (2012). Numerical simulation of micro-channel heat sink with dimpled surfaces. American Journal of Applied Sciences, 9(3), 399.
  • Dehghan, M., Daneshipour, M., Valipour, M. S., Rafee, R., & Saedodin, S. (2015). Enhancing heat transfer in microchannel heat sinks using converging flow passages. Energy Conversion and Management, 92, 244-250.
  • Patankar, S.V., (1980). Numerical Heat Transfer and Fluid Flow. 1st Edn, Hemisphere Publication Corporation, Washington: ISBN: 0070487405.
  • Grigull, U., & Tratz, H. (1965). Thermischer einlauf in ausgebildeter laminarer rohrströmung. International Journal of Heat and Mass Transfer, 8(5), 669-678.
APA BELHADJ A, BOUCHENAFA R, SAİM R (2018). A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. , 1912 - 1925.
Chicago BELHADJ A.,BOUCHENAFA R.,SAİM R. A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. (2018): 1912 - 1925.
MLA BELHADJ A.,BOUCHENAFA R.,SAİM R. A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. , 2018, ss.1912 - 1925.
AMA BELHADJ A,BOUCHENAFA R,SAİM R A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. . 2018; 1912 - 1925.
Vancouver BELHADJ A,BOUCHENAFA R,SAİM R A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. . 2018; 1912 - 1925.
IEEE BELHADJ A,BOUCHENAFA R,SAİM R "A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION." , ss.1912 - 1925, 2018.
ISNAD BELHADJ, A. vd. "A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION". (2018), 1912-1925.
APA BELHADJ A, BOUCHENAFA R, SAİM R (2018). A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. Journal of Thermal Engineering, 4(3), 1912 - 1925.
Chicago BELHADJ A.,BOUCHENAFA R.,SAİM R. A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. Journal of Thermal Engineering 4, no.3 (2018): 1912 - 1925.
MLA BELHADJ A.,BOUCHENAFA R.,SAİM R. A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. Journal of Thermal Engineering, vol.4, no.3, 2018, ss.1912 - 1925.
AMA BELHADJ A,BOUCHENAFA R,SAİM R A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. Journal of Thermal Engineering. 2018; 4(3): 1912 - 1925.
Vancouver BELHADJ A,BOUCHENAFA R,SAİM R A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION. Journal of Thermal Engineering. 2018; 4(3): 1912 - 1925.
IEEE BELHADJ A,BOUCHENAFA R,SAİM R "A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION." Journal of Thermal Engineering, 4, ss.1912 - 1925, 2018.
ISNAD BELHADJ, A. vd. "A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION". Journal of Thermal Engineering 4/3 (2018), 1912-1925.