Yıl: 2018 Cilt: 22 Sayı: 6 Sayfa Aralığı: 1538 - 1543 Metin Dili: İngilizce DOI: 10.16984/saufenbilder.322378 İndeks Tarihi: 25-10-2019

Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films

Öz:
Ac charge transport mechanisms have been comparatively investigated in ZnO thin films having different Cu dopant.A comparative study of the applicability of quantum mechanical tunelling and correlated barrier hopping model toobtained ac electrical conductivity results has been performed. Comparing the temperature dependence of thefrequency exponent shows that the correlated barrier hopping model best describes the experimental data on the acconductivity in ZnO:Cu thin films. In order to gain an understanding of the applicability of Meyer-Neldel rule, thedependence of the thermal activation energy on Cu doping concentration in these films has also been studied. Theobtained experimental results indicated that Meyer-Neldel rule can be succesfully applied ac conductivity data forhighly Cu doped films but not others which has been explained on the basis of distribution variations in density ofstates.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Y. S. Kim and W.P. Tai, “Electrical and optical properties of Al-doped ZnO thin films by sol–gel process”, Applied Surface Science, vol. 253, pp. 4911–4916, 2007
  • J. Xu, J. Han, Y. Zhang, Y. Sun, and B. Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors”, Sensors Actuators B: Chemical, vol. 132, pp. 334–339, 2008.
  • K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors-a status review”, Thin Solid Films, vol. 102, pp. 1–46, 1983.
  • Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Cheng, and S. Huang, “Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels”, Sensors and Actuators B: Chemical, vol. 140, pp. 549– 556, 2009.
  • Y. Dai, Y. Zhang, Q. K. Li, and C.W. Nan, “Synthesis and optical properties of tetrapod-like zinc oxide nanorods”, Chemical Physics Letters, vol. 358, pp. 83– 86, 2002.
  • X. Y. Du, Y. Q. Fu, S. C. Tan, J. K. Lu, A. J. Flewitt, S. Maeng, S. H. Kim, Y. J. Choi, D. S. Lee, N. M. Park, J. Park, W. I. Milne, ZnO film for application in surface acoustic wave device, Journal of Physics: Conference Series, vol. 76, pp. 012035-012040, 2007.
  • F. Maldonado, A. Stashans, Al-doped ZnO: Electronic, electrical and structural properties, Journal of Physics and Chemistry of Solids, vol. 71, pp. 784–787, 2010.
  • H.-R. An, H.-J. Ahn, J.-W. Park, Highquality, conductive, and transparent Gadoped ZnO films grown by atmosphericpressure chemical-vapor deposition, Ceramics International, vol. 41, pp. 2253– 2259, 2015.
  • Z. Q. Ma, W. G. Zhao, and Y. Wang, “Electrical properties of Na/Mg co-doped ZnO thin films”, Thin Solid Films, vol. 515, pp. 8611–8614, 2007.
  • A. E. Jimenez-Gonzalez, J. A. Soto Ureuta, and R. Suarez-Parra, “Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique”, Journal of Crystal Growth, vol. 192, pp. 430–438, 1998.
  • U. Wahl, E. Rita, J. G. Correia, E. Alves, and J. P. Araujo, “Implantation site of rare earths in single-crystalline ZnO”, Applied Physics Letters, vol. 82, pp. 1173–1175, 2003.
  • R. Kaur, A. V. Singh, and R. M. Mehra, “Structural, electrical and optical properties of sol–gel derived yttrium doped ZnO films”, Physica Status Solidi (a), vol. 202, pp. 1053–1059, 2005.
  • S. R. Elliott, A theory of a.c. conduction in chalcogenide glasses”, Philosophical Magazine, vol. 36, pp. 1291–1304, 1977.
  • S. R. Lukić-Petrović, F. Skuban, D. M. Petrović, and M. Slankamenac, “Effect of copper on DC and AC conductivities of (As2Se3)–(AsI3) glassy semiconductors”, Journal of Non-Crystalline Solids, vol. 356, pp. 2409–2413, 2010.
  • A. Altındal, Ş. Abdurrahmanoğlu, M. Bulut, and Ö. Bekaroğlu, “Charge transport mechanism in bis(double-decker lutetium(III) phthalocyanine) (Lu2Pc4) thin film”, Synthetic Metals, vol. 150, pp. 181– 187, 2005.
  • N. Kılınç, S. Öztürk, L. Arda, A. Altındal, and Z. Z. Öztürk, “Structural, electrical transport and NO2 sensing properties of Ydoped ZnO thin films”, Journal of Alloys and Compounds, vol. 536, pp. 138–144, 2012.
  • W. Meyer and H. Neldel, “Über die beziehungen zwischen der energiekonstanten e under der mengenkonstanten a in der leitwerts - temperaturformel bei oxydischen halbleitern”, Z. Techn. Phys B, vol. 18, pp. 588– 593, 1937.
  • J. W. Niemantsverdriet, K. Markert, and K. Wandelt, “The compensation effect and the manifestation of lateral interactions in thermal desorption spectroscopy”, Applied. Surface Science, vol. 31, pp. 211–219, 1988.
  • W. Bogusz, D. E. Kony, and F. Krok, “Application of the Meyer-Neldel rule to the electrical conductivity of Nasicon”, Materials Science and Engineering B, vol. 15, pp. 169–172, 1992.
  • P. H. Fang, “A model of Meyer-Neldel rule”, Physics Letters A, vol. 30, pp. 217–218, 1969.
  • N. Koga and J. Sestak, “Kinetic compensation effect as a mathematical consequence of the exponential rate constant”, Thermochimica Acta, vol. 182, pp. 201–208, 1991.
  • G. G. Roberts, “Thermally assisted tunnelling and pseudointrinsic conduction: two mechanisms to explain the Meyer- Neldel rule”, Journal of Physics C: Solid State Physics, vol. 4, pp. 167–176, 1971.
  • M. H. Cohen, E. N. Economou, and C. M. Soukoulis, “Electron transport in amorphous semiconductors”, Journal of Non- Crystalline Solids, vol. 66, pp. 285–290, 1984. [ G. Kemeny and G. B. Rosenberg, “Small Polarons in Organic and Biological Semiconductors”, The Journal of Chemical Physics, vol. 53, pp. 3549–3551, 1970.
  • S. R. Elliott, Physics of Amorphous Materials, 2nd ed., Longman Group UK Limited, England, 1990.
  • J. Stuke, “Problems in the understanding of electronic properties of amorphous silicon”, Journal of Non-Crystalline Solids, vol. 97– 98, pp. 1–14, 1987.
  • M. Kikuchi, “The Meyer–Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors”, Journal of Applied Physics, vol.64, pp. 4997–5001, 1988.
APA CAN N (2018). Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. , 1538 - 1543. 10.16984/saufenbilder.322378
Chicago CAN NURSEL Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. (2018): 1538 - 1543. 10.16984/saufenbilder.322378
MLA CAN NURSEL Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. , 2018, ss.1538 - 1543. 10.16984/saufenbilder.322378
AMA CAN N Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. . 2018; 1538 - 1543. 10.16984/saufenbilder.322378
Vancouver CAN N Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. . 2018; 1538 - 1543. 10.16984/saufenbilder.322378
IEEE CAN N "Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films." , ss.1538 - 1543, 2018. 10.16984/saufenbilder.322378
ISNAD CAN, NURSEL. "Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films". (2018), 1538-1543. https://doi.org/10.16984/saufenbilder.322378
APA CAN N (2018). Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(6), 1538 - 1543. 10.16984/saufenbilder.322378
Chicago CAN NURSEL Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no.6 (2018): 1538 - 1543. 10.16984/saufenbilder.322378
MLA CAN NURSEL Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.22, no.6, 2018, ss.1538 - 1543. 10.16984/saufenbilder.322378
AMA CAN N Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 22(6): 1538 - 1543. 10.16984/saufenbilder.322378
Vancouver CAN N Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 22(6): 1538 - 1543. 10.16984/saufenbilder.322378
IEEE CAN N "Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, ss.1538 - 1543, 2018. 10.16984/saufenbilder.322378
ISNAD CAN, NURSEL. "Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/6 (2018), 1538-1543. https://doi.org/10.16984/saufenbilder.322378