Yıl: 2018 Cilt: 46 Sayı: 4 Sayfa Aralığı: 577 - 591 Metin Dili: İngilizce DOI: 10.15671/HJBC.2018.264 İndeks Tarihi: 04-11-2019

Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties

Öz:
In this work, a novel stimuli-responsive p(EPMA-co-AMPS) hydrogels containing 2,3-epoxypropylmethacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid were prepared through free radical copolymerization. In addition to the swelling properties of the obtained hydrogels, surface morphology, chemical and mechanical properties are fully characterized using SEM, FTIR and TPA. Firstly, resulted hydrogels were carried out for removal of cationic dyes from aqueous solution in environmental applications. The adsorption isotherms and kinetics of hydrogels were in good agreement with Langmuir equation and the pseudo-second-order equation, respectively. In addition, the adsorption capacity of p(EPMA-co-AMPS) hydrogels compete with other currently reported adsorbents. Secondly, the use of hydrogel for controlled drug release studies in biomedical applications has been investigated as a drug carrier. Finally, drug-loaded hydrogels were tested for antibacterial activities against Gram‐positive bacteria (Bacillus cereus) and Gram‐negative bacteria (Salmonella typhimurium) and demonstrated antibacterial activity. Results obtained from this study suggest that the resulted hydrogel could be promising materials for various applications.
Anahtar Kelime:

Konular: Biyoloji Kimya, Analitik Kimya, Uygulamalı Kimya, Organik Kimya, Tıbbi Mühendislik, Kimya Biyoloji Çeşitliliğinin Korunması Kimya, İnorganik ve Nükleer

Katyonik Boyanın Anyonik Hidrojel Üzerinde Adsorbsiyonu ve Antibakteriyel Özelliklerle İlaç Uygulamasında İkinci Kullanımı

Öz:
Bu çalışmada, serbest radikal kopolimerizasyonu ile 2,3-epoksipropilmetakrilat ve 2-akrilamido-2-metil-1propansülfonik asit içeren yeni bir uyarana duyarlı p (EPMA-co-AMPS) hidrojeller hazırlandı. Elde edilen hidrojellerin şişme özelliklerinin yanında yüzey morfolojisi, kimyasal ve mekanik özellikleri SEM, FTIR ve TPA kullanılarak tamamen karakterize edilmiştir. İlk olarak, çevresel uygulamalarda sulu çözeltiden katyonik boyaların uzaklaştırılması için hidrojeller kullanılmıştır. Hidrojellerin adsorpsiyon izotermleri ve kinetikleri, sırasıyla Langmuir denklemi ve yalancı-ikinci mertebeden denklem ile iyi bir uyum içindedir. Ayrıca, p (EPMA-co-AMPS) hidrojellerin adsorpsiyon kapasitesi, halihazırda bildirilmiş olan diğer adsorbanlarla karşılaştırıldığında rekabet etmektedir. İkinci olarak, biyomedikal uygulamalarda kontrollü ilaç salımı çalışmaları için hidrojelin bir ilaç taşıyıcısı olarak kullanımı araştırılmıştır. Son olarak, ilaç-yüklü hidrojeller Gram‐pozitif bakterilere (Bacillus cereus) ve Gram‐negatif bakterilere (Salmonella typhimurium) karşı antibakteriyel aktiviteler için test edilmiş ve antibakteriyel aktivite göstermiştir. Bu çalışmadan elde edilen sonuçlar, hazırlanan hidrojelin çeşitli uygulamalar için umut verici materyaller olabileceğini göstermektedir.
Anahtar Kelime:

Konular: Biyoloji Kimya, Analitik Kimya, Uygulamalı Kimya, Organik Kimya, Tıbbi Mühendislik, Kimya Biyoloji Çeşitliliğinin Korunması Kimya, İnorganik ve Nükleer
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • P. Ilgin, O. Ozay, Novel stimuli-responsive hydrogels derived from morpholine: synthesis, characterization and absorption uptake of textile azo dye, Iran. Polym.J. 26 (2017) 391-404.
  • Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev., 53 (2001) 321-339.
  • R. Luo, H. Li, K. Y. Lam. Modeling and simulation of chemo-electro-mechanical behavior of pH-electricsensitive hydrogel, Anal. Bioanal. Chem., 389 (2007) 863-873.
  • N. Sahiner, P. Ilgin, Soft core-shell polymeric nanoparticles with magnetic property for potential guided drug delivery, Curr. Nanosci., 6 (2010) 483491.
  • S. Ahirrao, P. Gide, B. Shrivastav, P. Sharma, Extended release of theophylline through sodium alginate hydrogel beads: effect of glycerol on entrapment efficiency, drug release, Partic. Sci. Technol., 32 (2014) 105-111.
  • H. Kaşgöz, A. Durmus, Dye removal by a novel hydrogel‐clay nanocomposite with enhanced swelling properties, Polym. Adv. Technol., 19 (2008) 838-845.
  • R. Soleyman, A. Pourjavadi, A. Monfared, Z. Khorasani, Novel salep‐based chelating hydrogel for heavy metal removal from aqueous solutions, Polym. Adv. Technol., 27 (2016) 999-1005.
  • H. Ozay, O. Ozay, Rhodamine based reusable and colorimetric naked-eye hydrogel sensors for Fe3+ ion. Chem. Eng. J., 232 (2013) 364–371.
  • K. Yanagi, K. Ookawa, S. Mizuno, N. Ohshima., Performance of a new hybrid artificial liver support system using hepatocytes entrapped within a hydrogel, ASAIO J., 35 (1989) 570-571.
  • J. K. Hyun, J.N. Jin, E. Kan, K.J. Kim, S.H. Lee, Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization, Biotechnol. Bioprocess. Eng., 22 (2017) 89-94.
  • K. Dinesh, A. K. Saikia, B. Kaur, U.K. Mandal, Tuneable thermoresponsive hybrid magnetic nanoparticles: preparation, characterization and drug release characteristics, J. Chem. Technol. Biotechnol., 92 (2017) 1006-1016.
  • B. A. Omondi, R. Nguele, H. Okabe, Y. Hidaka, and K. Hara. Multicomponent adsorption of benzene and selected borderline heavy metals by poly (butadieneco-acrylic acid) hydrogel, J. Environ. Chem. Eng., 4 (2016) 3385-3392.
  • N. Zhang, M. Liu, Y. Shen, J. Chen, L. Dai, and C. Gao, Preparation, properties, and drug release of thermoand pH-sensitive poly ((2-dimethylamino) ethyl methacrylate)/poly (N,N-diethylacrylamide) semi-IPN hydrogels, J. Mater. Sci., 46 (2011) 1523-1534.
  • N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M. M. Mashhadi, Finite bending of bilayer pH-responsive hydrogels: A novel analytic method and finite element analysis, Compos. Part. B-Eng, 110 (2017) 116-123.
  • H. Milani, L.A. Fielding, P. Greensmith, B. R. Saunders, D. J. Adlam, A. J. Freemont, J.A. Hoyland, N.W. Hodson, M.A. Elsawy, A.F. Miller, Anisotropic pH-Responsive Hydrogels Containing Soft or Hard Rod-Like Particles Assembled Using Low Shear, Chem. Mater., 29 (2017) 3100-3110.
  • L. Yu, L. Yao, K. Yang, Redox and pH-responsive hydrogels: formulation and controlled drug delivery, J. Porous Mater., 23 (2016) 1581-1589.
  • P. Ilgin, O. Selcuk Zorer, O. Ozay, G. Boran, Synthesis and characterization of 2‐hydroxyethylmethacrylate/2‐(3indol‐yl)ethylmethacrylamide‐based novel hydrogels as drug carrier with in vitro antibacterial properties, J. Appl.Polym. Sci., 134 (2017) 45550.
  • B. Adnadjevic, J. Jovanovic, I. Krkljus, Isothermal kinetics of (E)‐4‐(4‐metoxyphenyl)‐4‐oxo‐2‐butenoic acid release from a poly (acrylic acid‐co‐methacrylic acid) hydrogel, J. Appl. Polym. Sci., 107 (2008) 27682775.
  • B. Taşdelen, D.İ. Çifçi, S. Meriç, Preparation of N-isopropylacrylamide/itaconic acid/Pumice highly swollen composite hydrogels to explore their removal capacity of methylene blue, Coll. Surf. A Physicochem. Eng. Asp., 519 (2017) 245-253.
  • R.R. Devi , T.K. Maji, Effect of glycidyl methacrylate on the physical properties of wood–polymer composites, Polym. Compos., 28 (2007) 1-5.
  • P. Ilgin, A. Gur. Synthesis and characterization of a new fast swelling poly (EPMA-co-METAC) as superabsorbent polymer for anionic dye absorbent, Iran. Polym. J., 24 (2015) 149-159.
  • W.F. Lee, W.Y. Yuan, Thermoreversible hydrogels X: Synthesis and swelling behavior of the (Nisopropylacrylamide‐co‐sodium 2‐acrylamido‐2methylpropyl sulfonate) copolymeric hydrogels, J. Appl. Polym. Sci., 77 (2000) 1760-1768.
  • D. Ozturk, T. Sahan, T. Bayram, A. Erkus, Application of Response Surface Methodology (Rsm) to Optimize The Adsorption Conditions of Cationic Basic Yellow 2 onto Pumice Samples as a New Adsorbent, Fresen. Environ. Bull., 26 (2017) 3285-3292.
  • S.E. Shaibu, F.A. Adekola, H.I. Adegoke, O.S. Ayanda, A comparative study of the adsorption of methylene blue onto synthesized nanoscale zero-valent ironbamboo and manganese-bamboo composites, Materials (Basel), 7 (2014) 4493–4507.
  • N.P. Bhagya, S. Sathyanarayani, S. Ananda, B.M. Nagabhushana, H. Nagabhushana, Adsorption of hazardous cationic dye onto the combustion derived SrTiO3 nanoparticles: Kinetic and isotherm studies, J. Asian Ceram. Soc., 4 (2016) 68-74.
  • T. Şahan, D. Öztürk, Investigation of Pb (II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology, Clean Technol. Envir., 16 (2014) 819-831.
  • M.T. Sulak, E. Demirbas, M. Kobya, Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran, Bioresour. Technol., 98 (2007) 2590
  • H. Tang, W. Zhou, L. Zhang, Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels, J. Hazard. Mater., 209 (2012) 218-225.
  • X. Ma, L. Li, L. Yang, C. Su, K. Wang, S. Yuan, J. Zhou, Adsorption of heavy metal ions using hierarchical CaCO 3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies, J. Hazard. Mater., 209 (2012) 467-477.
  • A.T. Paulino, M.R. Guilherme, A.V. Reis, G.M. Campese, E.C. Muniz, J. Nozaki, Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide, J. Colloid Interface Sci., 301 (2006) 55-62.
  • P.V. Dadhaniya, M.P. Patel, R.G. Patel, Swelling and dye adsorption study of novel superswelling [Acrylamide/ N-vinylpyrrolidone/3 (2-hydroxyethyl carbamoyl) acrylic acid] hydrogels, Polym. Bull., 57 (2006) 21-31.
  • G.R. Mahdavinia, M. Soleymani, M. Sabzi, H. Azimi, Z. Atlasi, Novel magnetic polyvinyl alcohol/laponite RD nanocomposite hydrogels for efficient removal of methylene blue, J. Environ. Chem. Eng., 5 (2017) 2617-2630.
  • E.S. Dragan, M.M. Lazar, M.V. Dinu, F. Doroftei. Macroporous composite IPN hydrogels based on poly (acrylamide) and chitosan with tuned swelling and sorption of cationic dyes, Chem. Eng. J., 204 (2012) 198-209.
  • S. Chatterjee, T. Chatterjee, S.R. Lim, S.H. Woo, Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation, Environ. Technol., 32 (2011) 15031514.
  • C. Hou, Q. Zhang, Y. Li, H. Wang, P25–graphene hydrogels: Room-temperature synthesis and application for removal of methylene blue from aqueous solution, J. Hazard. Mater., 205 (2012) 229235.
  • H.L.A. El-Mohdy, Controlled release of testosterone propionate based on poly N-vinyl pyrrolidone/2acrylamido-2-methyl-1-propanesulfonic acid hydrogels prepared by ionizing radiation, J. Polym. Res.,19 (2012) 1-14.
  • D.S. Seeli, M. Prabaharan. Guar gum oleate-graftpoly (methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier, Carbohyd. polym., 158 (2017) 51-57.
  • M. Sohail, M. Ahmad, M.U. Minhas, H. Rashid, I. Khalid, Development and in vitro evaluation of high molecular weight chitosan based polymeric composites for controlled delivery of valsartan, Adv. Polym. Tech., 35 (2016) 361-368.
  • R.M. Gutierrez, R. Baculi, N. Pastor, T. Puma-at, T. Balangcod, Antibacterial potential of some medicinal plants of the Cordillera Region, Philippines, Indian. J. Tradit. Know., 12 (2013) 630-637.
  • A. Klannik, S. Piskernik, B. Jeršek, S.S. Možina, Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts, J. Microbiol. Method., 81 (2010) 121-126.
APA ILGIN P (2018). Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. , 577 - 591. 10.15671/HJBC.2018.264
Chicago ILGIN Pınar Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. (2018): 577 - 591. 10.15671/HJBC.2018.264
MLA ILGIN Pınar Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. , 2018, ss.577 - 591. 10.15671/HJBC.2018.264
AMA ILGIN P Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. . 2018; 577 - 591. 10.15671/HJBC.2018.264
Vancouver ILGIN P Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. . 2018; 577 - 591. 10.15671/HJBC.2018.264
IEEE ILGIN P "Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties." , ss.577 - 591, 2018. 10.15671/HJBC.2018.264
ISNAD ILGIN, Pınar. "Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties". (2018), 577-591. https://doi.org/10.15671/HJBC.2018.264
APA ILGIN P (2018). Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. Hacettepe Journal of Biology and Chemistry, 46(4), 577 - 591. 10.15671/HJBC.2018.264
Chicago ILGIN Pınar Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. Hacettepe Journal of Biology and Chemistry 46, no.4 (2018): 577 - 591. 10.15671/HJBC.2018.264
MLA ILGIN Pınar Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. Hacettepe Journal of Biology and Chemistry, vol.46, no.4, 2018, ss.577 - 591. 10.15671/HJBC.2018.264
AMA ILGIN P Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. Hacettepe Journal of Biology and Chemistry. 2018; 46(4): 577 - 591. 10.15671/HJBC.2018.264
Vancouver ILGIN P Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties. Hacettepe Journal of Biology and Chemistry. 2018; 46(4): 577 - 591. 10.15671/HJBC.2018.264
IEEE ILGIN P "Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties." Hacettepe Journal of Biology and Chemistry, 46, ss.577 - 591, 2018. 10.15671/HJBC.2018.264
ISNAD ILGIN, Pınar. "Adsoption of Cationic Dye on Anionic Hydrogel and Its Second Use for Drug Delivery with Antibacterial Properties". Hacettepe Journal of Biology and Chemistry 46/4 (2018), 577-591. https://doi.org/10.15671/HJBC.2018.264