Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi

Yıl: 2018 Cilt: 22 Sayı: 2 Sayfa Aralığı: 383 - 391 Metin Dili: Türkçe DOI: 10.16984/saufenbilder.343562 İndeks Tarihi: 28-11-2019

Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi

Öz:
Bu çalışmada, standart silindir boyutlarda üretilen betonların Elyaf Takviyeli Polimer (FRP) kompozitlerile güçlendirilmesinde elyaf türü, sargı katman sayısı ve faklı tür elyafın hibrit olarak kullanımının etkileriaraştırılmıştır. Aynı şartlar altında üretilmiş, ortalama 30,25 MPa basınç dayanımına sahip betonlar tekdoğrultulu cam ve karbon elyaf kumaşlarla enine bir, iki, üçer kat sarılarak ve ayrıca cam ve karbon kumaşhibrit olarak sarılarak güçlendirilmiştir. Beton numuneler eksenel basınç testi altında sabit hızlı yüklemeile test edilmiştir. Elyaf türünün, sargı katmanı sayısının ve hibrit kullanımının beton davranışına etkilerikarşılaştırmalı olarak incelenmiştir. Test sonuçları incelendiğinde, sargı katmanı sayısı arttığında betonunbasınç dayanımı ve deformasyon kabiliyetinin arttığı tespit edilmiştir. Ayrıca hibrit güçlendirmenin tekilgüçlendirmeye göre daha etkili olduğu ortaya konulmuştur.
Anahtar Kelime:

Konular: Mühendislik, Makine İnşaat Mühendisliği İnşaat ve Yapı Teknolojisi Polimer Bilimi

Effect of Using FRP Composites as Hybrid in the Strengthening of Concretes

Öz:
In this study, the effect of fiber type, number of layers and hybrid use of different type fibers on concrete behavior was investigated in standard cylinder concretes strengthened by Fiber Reinforced Polymer (FRP) composites. Specimens were produced in average of 30.25 MPa compressive strength with standard cylinder sizes and were strengthened with unidirectional glass fiber fabric, unidirectional carbon fiber fabric and hybrid use of glass and carbon fiber fabrics. Concrete members were tested under axial compressive loads. The effect of fiber type, number of layers and hybrid use of different type fibers on concrete behavior was evaluated comparatively. The test results have indicated that concrete compressive strength and deformation capacities increase when the number of wrap layers increase. It is also shown that hybrid strengthening is more effective than individual strengthening.
Anahtar Kelime:

Konular: Mühendislik, Makine İnşaat Mühendisliği İnşaat ve Yapı Teknolojisi Polimer Bilimi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • M. Saatcioglu et al., “The August 17, 1999, Kocaeli (Turkey) earthquake — damage to structures,” Can. J. Civ. Eng., vol. 28, no. 4, pp. 715–737, 2001.
  • H. Sezen, A. S. Whittaker, K. J. Elwood, and K. M. Mosalam, “Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey,” Eng. Struct., vol. 25, pp. 103–114, 2003.
  • H. Sezen, A. S. Whittaker, K. J. Elwood, and K. M. Mosalam, “Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey,” Eng. Struct., vol. 25, no. 1, pp. 103–114, 2003.
  • H. Kaplan, S. Yilmaz, H. Binici, E. Yazar, and N. Çetinkaya, “May 1, 2003 Turkey— Bingöl earthquake: damage in reinforced concrete structures,” Eng. Fail. Anal., vol. 11, no. 3, pp. 279–291, 2004.
  • A. Dogangun, “Performance of reinforced concrete buildings duringrthe May 1, 2003 Bingo¨ l Earthquake in Turkey,” Eng. Struct., vol. 26, pp. 841–856, 2004.
  • A. Doǧangün, “Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey,” Eng. Struct., vol. 26, no. 6, pp. 841–856, 2004.
  • A. Bayraktar et al., “Structural Performance Evaluation of 90 RC Buildings Collapsed during the 2011 Van, Turkey, Earthquakes,” J. Perform. Constr. Facil., vol. 29, no. 6, p. 4014177, 2013.
  • M. Tapan, M. Comert, C. Demir, Y. Sayan, K. Orakcal, and A. Ilki, “Failures of structures during the October 23, 2011 Tabanli (Van) and November 9, 2011 Edremit (Van) earthquakes in Turkey,” Eng. Fail. Anal., vol. 34, pp. 606–628, 2013.
  • A. Bayraktar, A. C. Altunişik, and M. Pehlivan, “Performance and damages of reinforced concrete buildings during the October 23 and November 9, 2011 Van, Turkey, earthquakes,” Soil Dyn. Earthq. Eng., vol. 53, pp. 49–72, 2013.
  • E. Çelebi et al., “October 23, 2011 Turkey/Van-Ercis earthquake: Structural damages in the residential buildings,” Nat. Hazards, vol. 65, no. 3, pp. 2287–2310, 2013.
  • E. Damci, R. Temur, G. Bekdaş, and B. Sayin, “Damages and causes on the structures during the October 23, 2011 Van earthquake in Turkey,” Case Stud. Constr. Mater., vol. 3, pp. 112–131, 2015.
  • R. Eid and P. Paultre, “Compressive behavior of FRP-confined reinforced concrete columns,” Eng. Struct., vol. 132, pp. 518–530, 2017.
  • A. Mirmiran and M. Shahawy, “Behavior of Concrete Columns Confined by Fiber Composites,” J. Struct. Eng., vol. 123, no. 5, pp. 583–590, 1997.
  • M. Shin and B. Andrawes, “Experimental investigation of actively confined concrete using shape memory alloys,” Eng. Struct., vol. 32, no. 3, pp. 656–664, 2010.
  • Y.-Z. Zhong, Q. Yu, and Z. Tao, “Compressive behaviour of CFRP-confined rectangular concrete columns,” Mag. Concr. Res., vol. 60, no. 10, pp. 735–745, 2008.
  • M. Seffo and M. Hamcho, “Strength of concrete cylinder confined by composite materials (CFRP),” in Energy Procedia, 2012, vol. 19, pp. 276–285.
  • T. Ozbakkaloglu and E. Akin, “Behavior of FRP-Confined Normal- and High-Strength Concrete under Cyclic Axial Compression,” J. Compos. Constr., vol. 16, no. 4, pp. 451–463, 2012.
  • A. Ilki, O. Peker, E. Karamuk, C. Demir, and N. Kumbasar, “FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns,” J. Mater. Civ. Eng., vol. 20, no. 2, pp. 169–188, 2008.
  • J. Li and M. N. S. Hadi, “Behaviour of externally confined high-strength concrete columns under eccentric loading,” Compos. Struct., vol. 62, no. 2, pp. 145–153, 2003.
  • A. Ilki, N. Kumbasar, and V. Koç, “Low and medium strength concrete members confined by fiber reinforced polymer jackets,” ARI Bull. Istanbul Tech. Univ., vol. 53, no. 1, 2003.
  • H. Toutanji and Y. Deng, “Strength and durability performance of concrete axially loaded members confined with AFRP composite sheets,” Compos. Part BEngineering, vol. 33, no. 4, pp. 255–261, 2002.
  • H. Saadatmanesh, M. R. Ehsani, and M. W. Li, “Strength and ductility of concrete columns externally reinforced with fiber composite straps,” ACI Struct. J., vol. 91, no. 4, pp. 434–447, 1994.
  • A. Ilki, N. Kumbasar, and V. Koc, “Low strength concrete members externally confined with FRP sheets,” Struct. Eng. Mech., vol. 18, no. 2, pp. 167–194, 2004.
  • H. A. Toutanji, “Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets,” ACI Mater. J., vol. 96, no. 3, pp. 397–404, 1999.
  • L. Lam, J. G. Teng, C. H. Cheung, and Y. Xiao, “FRP-confined concrete under axial cyclic compression,” Cem. Concr. Compos., vol. 28, no. 10, pp. 949–958, 2006.
  • M. F. Green, L. A. Bisby, A. Z. Fam, and V. K. R. Kodur, “FRP confined concrete columns: Behaviour under extreme conditions,” Cem. Concr. Compos., vol. 28, no. 10, pp. 928–937, 2006.
  • J. G. Teng and L. Lam, “Behavior and modeling of fiber reinforced polymerconfined concrete,” J. Struct. Eng., vol. 130, no. 11, pp. 1713–1723, 2004.
  • A. Saribiyik and N. Caglar, “Flexural strengthening of RC beams with lowstrength concrete using GFRP and CFRP,” Struct. Eng. Mech., vol. 58, no. 5, pp. 825– 845, 2016.
  • F. Micelli and R. Modarelli, “Experimental and analytical study on properties affecting the behaviour of FRP-confined concrete,” Compos. Part B Eng., vol. 45, no. 1, pp. 1420–1431, 2013.
  • H. K. Karan Veysel Çelik, “Karbon elyaf ile betonun güçlendirilmesi,” vol. 30, no. 412, pp. 1–12, 2014.
  • T. Vincent and T. Ozbakkaloglu, “Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete,” Compos. Part B Eng., vol. 50, pp. 413–428, 2013.
  • T. Turgay, Z. Polat, H. O. Koksal, B. Doran, and C. Karakoç, “Compressive behavior of large-scale square reinforced concrete columns confined with carbon fiber reinforced polymer jackets,” Mater. Des., vol. 31, no. 1, pp. 357–364, 2010.
  • P. Yin, L. Huang, L. Yan, and D. Zhu, “Compressive behavior of concrete confined by CFRP and transverse spiral reinforcement. Part A: experimental study,” Mater. Struct., vol. 49, no. 3, pp. 1001– 1011, 2016.
  • Y. Xiao and H. Wu, “Compressive behavior of concrete confined by various types of FRP composite jackets,” J. Reinf. Plast. Compos., vol. 22, no. 13, pp. 1187–1201, 2003.
  • Y. Xiao and H. Wu, “Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets,” J. Mater. Civ. Eng., vol. 12, no. MAY, pp. 139–146, 2000.
  • Y.-L. Bai, J.-G. Dai, and J. G. Teng, “Cyclic Compressive Behavior of Concrete Confined with Large Rupture Strain FRP Composites,” J. Compos. Constr., vol. 18, no. 1, p. 4013025, 2014.
  • J. G. Teng and L. Lam, “Compressive Behavior of Carbon Fiber Reinforced Polymer-Confined Concrete in Elliptical Columns,” J. Struct. Eng., vol. 128, no. 12, pp. 1535–1543, 2002.
  • D. A. Bournas and T. C. Triantafillou, “Bond Strength of Lap-Spliced Bars in Concrete Confined with Composite Jackets,” J. Compos. Constr., vol. 15, no. 2, pp. 156–167, 2011.
  • K. A. Harries, J. R. Ricles, S. Pessiki, and R. Sause, “Seismic retrofit of lap splices in nonductile square columns using carbon fiber-reinforced jackets,” ACI Struct. J., vol. 103, no. 6, pp. 874–884, 2006.
  • D. a. Bournas, T. C. Triantafillou, K. Zygouris, and F. Stavropoulos, “Textile- Reinforced Mortar versus FRP Jacketing in Seismic Retrofitting of RC Columns with Continuous or Lap-Spliced Deformed Bars,” J. Compos. Constr., vol. 13, no. October, pp. 360–371, 2009.
  • K. K. Ghosh and S. A. Sheikh, “Seismic upgrade with carbon fiber-reinforced polymer of columns containing lap-spliced reinforcing bars,” ACI Struct. J., vol. 104, no. 2, pp. 227–236, 2007.
  • J. F. Berthet, E. Ferrier, and P. Hamelin, “Compressive behavior of concrete externally confined by composite jackets: Part B: Modeling,” Constr. Build. Mater., vol. 20, no. 5, pp. 338–347, 2006.
  • T. Ozbakkaloglu and J. C. Lim, “Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model,” Compos. Part B Eng., vol. 55, pp. 607–634, 2013.
  • L. Lam and J. G. Teng, “Stress-strain model for FRP-confined concrete under cyclic axial compression,” Eng. Struct., vol. 31, no. 2, pp. 308–321, 2009.
  • T. C. Rousakis, A. I. Karabinis, and P. D. Kiousis, “FRP-confined concrete members: Axial compression experiments and plasticity modelling,” Eng. Struct., vol. 29, no. 7, pp. 1343–1353, 2007.
  • A. Ilki and N. Kumbasar, “Karbon Lif Takviyeli Polimer Kompozit Malzeme Ile Hasarli Betonarme Elemanlarin Onarim ve G????lendirmesi,” Tek. Dergi/Technical J. Turkish Chamb. Civ. Eng., vol. 13, no. 1, pp. 2597–2616, 2002.
  • A. Sarıbıyık, N. Çağlar, and M. Elmas, “Betonların Güçlendirilmesinde Karbon Fiber Takviyeli Polimer Yerine Cam Fiber Takviyeli Polimer Kullanılması,” 1ist Internatıonal Symp. Innov. Technol. Engıneerıng Scıence, pp. 745–754, 2013.
  • A. W. C. Oreta and J. M. C. Ongpeng, “Modeling the confined compressive strength of hybrid circular concrete columns using neural networks,” Comput. Concr., vol. 8, no. 5, pp. 597–616, 2011.
APA SARIBIYIK A (2018). Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. , 383 - 391. 10.16984/saufenbilder.343562
Chicago SARIBIYIK Ali Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. (2018): 383 - 391. 10.16984/saufenbilder.343562
MLA SARIBIYIK Ali Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. , 2018, ss.383 - 391. 10.16984/saufenbilder.343562
AMA SARIBIYIK A Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. . 2018; 383 - 391. 10.16984/saufenbilder.343562
Vancouver SARIBIYIK A Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. . 2018; 383 - 391. 10.16984/saufenbilder.343562
IEEE SARIBIYIK A "Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi." , ss.383 - 391, 2018. 10.16984/saufenbilder.343562
ISNAD SARIBIYIK, Ali. "Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi". (2018), 383-391. https://doi.org/10.16984/saufenbilder.343562
APA SARIBIYIK A (2018). Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 383 - 391. 10.16984/saufenbilder.343562
Chicago SARIBIYIK Ali Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no.2 (2018): 383 - 391. 10.16984/saufenbilder.343562
MLA SARIBIYIK Ali Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.22, no.2, 2018, ss.383 - 391. 10.16984/saufenbilder.343562
AMA SARIBIYIK A Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 22(2): 383 - 391. 10.16984/saufenbilder.343562
Vancouver SARIBIYIK A Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 22(2): 383 - 391. 10.16984/saufenbilder.343562
IEEE SARIBIYIK A "Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, ss.383 - 391, 2018. 10.16984/saufenbilder.343562
ISNAD SARIBIYIK, Ali. "Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımının etkisi". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (2018), 383-391. https://doi.org/10.16984/saufenbilder.343562