Yıl: 2018 Cilt: 39 Sayı: 33 Sayfa Aralığı: 900 - 911 Metin Dili: İngilizce DOI: 10.17776/csj.384509 İndeks Tarihi: 22-01-2020

A Computational Method for the Time-Fractional Navier-Stokes Equation

Öz:
In this study, Navier-Stokes equations with fractional derivate are solved according to time variable. To solve these equations, hybrid generalized differential transformation and finite difference methods are used in various subdomains. The aim of this hybridization is to combine the stability of the difference method and simplicity of the differential transformation method in use. It has been observed that the computational intensity of complex calculations is reduced and also discontinuity due to initial conditions can be overcome when the size increased in the study. The convergence of the time-dependent series solution is ensured by multi-time-stepping method. This study has shown that the hybridization method is effective, reliable and easy to apply for solving such type of equations.
Anahtar Kelime:

Zaman Değişkeninde Kesirli Türev İçeren Navier-Stokes Denklemlerinin Sayısal Çözümü

Öz:
Bu çalışmada zaman değişkenine göre kesirli türev içeren Navier-Stokes denklemleri çözülmüştür. Denklemlerin çözümünde genelleştirilmiş diferansiyel dönüşüm ve sonlu fark metotları beraber farklı alt aralıklara bölünerek çok adımlı olarak kullanılmıştır. Bu melezleme ile sonlu fark metodunun kararlılık özelliği ve diferansiyel dönüşüm metodunun uygulama kolaylığı özelliklerinin birleştirilmesi amaçlanmıştır. Ele alınan örneklerde karmaşık hesaplamaların getirdiği işlem yükünün azaldığı ve çok boyutlu problemlerde ise başlangıç koşulu nedeniyle oluşan süreksizliğin aşılabildiği görülmüştür. Zamana bağlı seri çözümünün yakınsaklığı ise çok zaman adımlı metot kullanılarak sağlanmıştır. Yapılan çalışma melezleme metodunun bu tür denklemlerin çözümünde etkili, güvenilir ve uygulanması kolay olduğunu göstermiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmad, W. M., El-Khazali, R., Fractional-Order Dynamical Models of Love, Chaos, Solitons & Fractals 33 (4) (2007) 1367–1375.
  • Padovan J., Computational algorithms for FE formulations involving fractional operators, Comput. Mech. 5 (1987) 271–287.
  • Momani S., Non-perturbative analytical solutions of the space- and time-fractional Burgers equations, Chaos Solitons & Fractals 28 (4) (2006) 930–937.
  • Momani S. and Odibat Z., Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method, Appl. Math. Comput. 177 (2006) 488–494.
  • Odibat Z. and Momani S., Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput. 181 (2006) 1351–1358.
  • Momani S., An explicit and numerical solution of the fractional KdV equation, Math. Comput. Simulation 70 (2) (2005) 110–118.
  • Momani S. And Odibat Z., Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A 355 (2006) 271–279.
  • Momani S. And Odibat Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos, Solitons & Fractals, 31 (5) (2007) 1248–1255.
  • He J.H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engrg. 167 (1998) 57–68.
  • Odibat Z. and Momani S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (1) (2006) 15–27.
  • Odibat Z. and Momani S., Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos, Solitons & Fractals 36 (2008) 167-174.
  • Momani S. and Odibat Z., Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl. 54 (2007) 910-919.
  • Podlubny I., Fractional Differential Equations, Academic Press, New York, 1999.
  • Baskonus, H. M.and Bulut H., On the Numerical Solutions of Some Fractional Ordinary Differential Equations by Fractional Adams-Bashforth-Moulton Method, Open Mathematics, 13(1)(2015), 547–556.
  • Odibat Z. and Momani S., A generalized differential transform method for linear partial differential equations of fractional order, Applied Mathematics Letters 21 (2) (2008) 194–199.
  • El-Shahed M. and Salem A., On the generalized Navier–Stokes equations, Appl. Math. Comput. 156 (1) (2004) 287–293.
  • Odibat Z.M. and Shawagfeh N.T., Generalized Taylor’s formula, Appl. Math. Comp. 186 (2007) 286–293.
  • Zhou J.K., Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan, P. R., China 1986.
  • Arikoglu A. and Ozkol I., Solution of Difference Equations by Using Differential Transform Method, Appl. Math. Comput. 174(2) (2006) 1216-1228.
  • Ayaz F., Solutions of the system of differential equations by differential transform method, Appl. Math. Comput. 147 (2004) 547–567.
  • Arikoglu A. and Ozkol I., Solution of boundary value problems for integro-differential equations by using differential transform method, Appl. Math. Comput. 168(2) (2005) 1145–1158.
  • Bildik N., Konuralp A.,Orak Bek F., Kucukarslan S., Solution of different type of the partial differential equation by differential transform method and Adomian’s decomposition method, Appl. Math. Comput. 172 (2006) 551–567.
  • Abdel-Halim Hassan I.H., Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos, Solitons & Fractals 36 (2008) 53-65.
  • Jang M.J., Chen C.L., Liy Y.C., On Solving the Initial-Value Problems Using the Differential Transformation Method, Appl. Math. Comput., 115 (2000) 145–160.
  • Rida S.Z., El-Sayed A.M.A., Arafa A.A.M., On the solutions of time-fractional reaction–diffusion equations, Communications in Nonlinear Science and Numerical Simulation 15 (2010) 3847-3854.
  • Odibat Z., Bertelle C., Aziz-Alaoui M.A., Duchamp G.H.E., A multi-step differential transform method and application to non-chaotic and chaotic systems, Comput. Math. Appl. 59 (2010) 1462–1472.
  • Zou L., Wang Z., Zong Z., Zou D., Zhang S., Solving shock wave with discontinuity by enhanced differential transform method (EDTM), Appl. Math. Mech. -Engl. Ed., 33(12) (2012) 1569–1582.
  • Liu H. and Song Y., Differential transform method applied to high index differential–algebraic equations, Appl. Math. Comp. 184 (2007) 748–753.
  • Chen X., Dai Y., Differential transform method for solving Richards’ equation, Appl. Math. Mech. -Engl. Ed., 37(2) (2016) 169–180.
  • Yu L.T. and Chen C.K., Application of the Hybrid Method to the Transient Thermal Stresses Response in Isotropic Annular Fins, J. Appl. Mech. 66 (1999) 340-347.
  • Kuo B.L. and Chen C.K., Application of a Hybrid Method to the Solution of the Nonlinear Burgers' Equation, J. Appl. Mech. 70 (2003) 926-930.
  • Chen C.K., Lai H.Y., Liu C.C., Application of hybrid differential transformation/finite difference method to nonlinear analysis of micro fixed-fixed beam, Microsyst Technol. 15 (2009) 813–820.
  • Chu H.P. and Chen C.L., Hybrid differential transform and finite difference method to solve the nonlinear heat conduction problem, Communications in Nonlinear Science and Numerical Simulation 13 (8) (2008) 1605–1614.
  • Smith G.D., Numerical Solution of Partial Differential Equations Finite Difference Methods, Oxford University Press, 1978.
APA ÇİLİNGİR SÜNGÜ İ, DEMIR H (2018). A Computational Method for the Time-Fractional Navier-Stokes Equation. , 900 - 911. 10.17776/csj.384509
Chicago ÇİLİNGİR SÜNGÜ İNCİ,DEMIR HÜSEYIN A Computational Method for the Time-Fractional Navier-Stokes Equation. (2018): 900 - 911. 10.17776/csj.384509
MLA ÇİLİNGİR SÜNGÜ İNCİ,DEMIR HÜSEYIN A Computational Method for the Time-Fractional Navier-Stokes Equation. , 2018, ss.900 - 911. 10.17776/csj.384509
AMA ÇİLİNGİR SÜNGÜ İ,DEMIR H A Computational Method for the Time-Fractional Navier-Stokes Equation. . 2018; 900 - 911. 10.17776/csj.384509
Vancouver ÇİLİNGİR SÜNGÜ İ,DEMIR H A Computational Method for the Time-Fractional Navier-Stokes Equation. . 2018; 900 - 911. 10.17776/csj.384509
IEEE ÇİLİNGİR SÜNGÜ İ,DEMIR H "A Computational Method for the Time-Fractional Navier-Stokes Equation." , ss.900 - 911, 2018. 10.17776/csj.384509
ISNAD ÇİLİNGİR SÜNGÜ, İNCİ - DEMIR, HÜSEYIN. "A Computational Method for the Time-Fractional Navier-Stokes Equation". (2018), 900-911. https://doi.org/10.17776/csj.384509
APA ÇİLİNGİR SÜNGÜ İ, DEMIR H (2018). A Computational Method for the Time-Fractional Navier-Stokes Equation. Cumhuriyet Science Journal, 39(33), 900 - 911. 10.17776/csj.384509
Chicago ÇİLİNGİR SÜNGÜ İNCİ,DEMIR HÜSEYIN A Computational Method for the Time-Fractional Navier-Stokes Equation. Cumhuriyet Science Journal 39, no.33 (2018): 900 - 911. 10.17776/csj.384509
MLA ÇİLİNGİR SÜNGÜ İNCİ,DEMIR HÜSEYIN A Computational Method for the Time-Fractional Navier-Stokes Equation. Cumhuriyet Science Journal, vol.39, no.33, 2018, ss.900 - 911. 10.17776/csj.384509
AMA ÇİLİNGİR SÜNGÜ İ,DEMIR H A Computational Method for the Time-Fractional Navier-Stokes Equation. Cumhuriyet Science Journal. 2018; 39(33): 900 - 911. 10.17776/csj.384509
Vancouver ÇİLİNGİR SÜNGÜ İ,DEMIR H A Computational Method for the Time-Fractional Navier-Stokes Equation. Cumhuriyet Science Journal. 2018; 39(33): 900 - 911. 10.17776/csj.384509
IEEE ÇİLİNGİR SÜNGÜ İ,DEMIR H "A Computational Method for the Time-Fractional Navier-Stokes Equation." Cumhuriyet Science Journal, 39, ss.900 - 911, 2018. 10.17776/csj.384509
ISNAD ÇİLİNGİR SÜNGÜ, İNCİ - DEMIR, HÜSEYIN. "A Computational Method for the Time-Fractional Navier-Stokes Equation". Cumhuriyet Science Journal 39/33 (2018), 900-911. https://doi.org/10.17776/csj.384509