Yıl: 2019 Cilt: 41 Sayı: 1 Sayfa Aralığı: 12 - 17 Metin Dili: İngilizce DOI: 10.14744/etd.2019.19001 İndeks Tarihi: 24-01-2020

New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases

Öz:
Programed death-1 (PD-1) is an immune checkpoint pathway used by cancer cells to evade the anti-cancer activity of T cells.If this pathway is active, inhibitory signals create an unresponsive state, bringing about the tumor growth. Nowadays, thePD-1/PD-L1, L2 inhibitor therapy shows a new way of treatment to clinicians who are working with hemato-oncologic cancers. Some diseases, such as classic Hodgkin lymphoma (cHL) and primary mediastinal large-B-cell lymphoma, that expresslarge amounts of programed death-ligand 1(PD-L1), may be a good target of such a therapy. In hematology, the anti-PD-1therapy is used successfully and safely in cHL. Other studies are limited, or the results are not available yet. Although mostof the diseases, except chronic lymphocytic leukemia and multiple myeloma, show meaningful responses, when using thesedrugs, we must carefully monitor autoimmune and rare, but serious side effects. In this paper, we emphasize the use of PD-1inhibitors in hematology.
Anahtar Kelime:

Konular: Genel ve Dahili Tıp
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Gardner D, Jeffery LE, Sansom DM. Understanding the CD28/CTLA4 (CD152) pathway and its implications for costimulatory blockade. Am J Transplant 2014; 14(9): 1985–91. [CrossRef]
  • Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13(4): 227–42. [CrossRef]
  • Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 2008; 111(6): 3220–4. [CrossRef]
  • Yuan J, Wright G, Rosenwald A, Steidl C, Gascoyne RD, Connors JM, et al; Lymphoma Leukemia Molecular Profiling Project (LLMPP). Identification of Primary Mediastinal Large B-cell Lymphoma at Nonmediastinal Sites by Gene Expression Profiling. Am J Surg Pathol 2015; 39(10): 1322–30. [CrossRef]
  • Twa DD, Steidl C. Structural genomic alterations in primary mediastinal large B-cell lymphoma. Leuk Lymphoma 2015; 56(8): 2239–50.
  • Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res 2011; 17(13): 4232–44. [CrossRef]
  • Menter T, Bodmer-Haecki A, Dirnhofer S, Tzankov A. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol 2016; 54: 17–24. [CrossRef]
  • Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood 2015; 126(19): 2193–201. [CrossRef]
  • Rossille D, Gressier M, Damotte D, Maucort-Boulch D, Pangault C, Semana G, et al; Groupe Ouest-Est des Leucémies et Autres Maladies du Sang. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-cell lymphoma: results from a French multicenter clinical trial.
  • Leukemia 2014; 28(12): 2367–75. [CrossRef]
  • Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 2013; 19(13): 3462–73. [CrossRef]
  • Nicolae A, Pittaluga S, Abdullah S, Steinberg SM, Pham TA, DaviesHill T, et al. EBVpositive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood 2015; 126(7): 863–72. [CrossRef]
  • Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O’Donnell E, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 2012; 18(6): 1611–8. [CrossRef]
  • Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE, et al. High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood 2013; 121(8): 1367–76. [CrossRef]
  • Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG, Xu N. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 2006; 108: 19–24.
  • Richendollar B G, Pohlman B, Elson P, Hsi ED. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum Pathol 2011; 42(4): 552–7. [CrossRef]
  • Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110(1): 296–304. [CrossRef]
  • Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 2015 372(4): 311–9. [CrossRef]
  • Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol 2016; 34(31): 3733–9. [CrossRef]
  • Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol 2016; 17(9): 1283–94. [CrossRef]
  • Chen R, Zinzani PL, Fanale MA, Armond P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol 2017; 35(19): 2125–32. [CrossRef]
  • Beköz H, Karadurmus N, Paydas S, Türker A, Toptas T, Firatli Tuglular T, et al. Nivolumab for relapsed or refractory Hodgkin lymphoma: reallife experience. Ann Oncol 2017; 28(10): 2496–502. [CrossRef]
  • Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol 2018; 36(14): 1428–39. [CrossRef]
  • El Cheikh J, Massoud R, Abudalle I, Haffar B, Mahfouz R, KharfanDabaja MA, et al. Nivolumab salvage therapy before or after allogeneic stem cell transplantation in Hodgkin lymphoma. Bone Marrow Transplant 2017; 52(7): 1074–7. [CrossRef]
  • Herbaux C, Gauthier J, Brice P, Drumez E, Ysebaert L, Doyen H et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma. Blood 2017; 129(18): 2471–8.
  • Armand, P, Shipp MA, Kuruvilla J, Collins GP, Ramchandren R, Timmerman J, et al. A phase 2 study of a nivolumab (nivo)-containing regimen in patients (pts) with newly diagnosed classical Hodgkin lymphoma (cHL): Study 205 Cohort D. J Clin Oncol 2016; 34(Suppl): TPS7573. [CrossRef]
  • US National Library of Medicine. ClinicalTrials.gov. NCT02758717(2016). Available at: https://clinicaltrials.gov/ct2/show/. Accessed Feb 6, 2019.
  • US National Library of Medicine. ClinicalTrials.gov. NCT02581631(2016). Available at: https://clinicaltrials.gov/ct2/ show/. Accessed Feb 6, 2019.
  • Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J Clin Oncol 2016; 34(23): 2698–704. [CrossRef]
  • Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M. et al. Phase I safety and pharmacokinetic study of CT 011, a humanized antibody interacting with PD 1, in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14(10): 3044–51.
  • Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 2013; 31(33): 4199–206. [CrossRef]
  • Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, et al. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol 2009; 27(9): 1470–6. [CrossRef]
  • Westin JR. Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol 2014; 15(1): 69–77. [CrossRef]
  • Davis TA, Grillo-López AJ, White CA, McLaughlin P, Czuczman MS, Link BK. et al. Rituximab anti CD20 monoclonal antibody therapy in non Hodgkin’s lymphoma: safety and efficacy of re treatment. J Clin Oncol 2000; 18(17): 3135–43. [CrossRef]
  • Jain N, Basu S, Thompson PA, Ohanian M, Ferrajoli A, Pemmaraju N et al. Nivolumab combined with ibrutinib for CLL and Richter transformation: a phase II trial. Blood 2016; 30: 233–44. [CrossRef]
  • Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 2006; 12(10): 1198–202. [CrossRef]
  • Huang SY, Lin HH, Lin CW, Li CC, Yao M, Tang JL, et al. Soluble PD-L1: A biomarker to predict progression of autologous transplantation in patients with multiple myeloma. Oncotarget 2016; 7(38): 62490–502. [CrossRef]
  • San Miguel, J, Mateos M, Shah JJ, Ocio EM, Rodriguez-Otero P, Reece D, et al. Pembrolizumab in Combination with Lenalidomide and Low-Dose Dexamethasone for Relapsed/Refractory Multiple Myeloma (RRMM): Keynote-023. Blood 2015; 126(23): 505.
  • Badros A, Hyjek E, Ma N, Lesokhin A, Dogan A, Rapoport AP, et al, Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma, Blood 2017; 130(10): 1189–97.
  • FDA Alerts Healthcare Professionals and Oncology Clinical Investigators about Two Clinical Trials on Hold Evaluating KEYTRUDA® (pembrolizumab) in Patients with Multiple Myeloma. Available at: https:// www.fda.gov/drugs/drugsafety/ucm574305.htm. Accessed Feb 6, 2019.
  • Daver N, Basu S, Garcia-Manero G, Cortes JE, Ravandi F, Jabbour EJ et al. Phase IB/ II study of nivolumab in combination with azacytidine (AZA) in patients (pts) with relapsed acute myeloid leukemia (AML). Blood 2016; 128(6): 763–73.
  • Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014; 28(6): 1280–8. [CrossRef]
  • Garcia-Manero G, Daver NG, Montalban-Bravo G, Jabbour EJ, DiNardo CD, Kornblau SM, et al. A phase II study evaluating the combination of nivolumab (Nivo) or ipilimumab (Ipi) with azacitidine in Pts with previously treated or untreated myelodysplastic syndromes (MDS). Blood 2016; 128: 344.
  • Peker D. Navigating through Mutations in Acute Myeloid Leukemia. What Do We Know and What Do We Do with it? Erciyes Med J 2018; 40(4): 183–7. [CrossRef]
  • Zinzani PL, Ribrag V, Moskowitz CH, Michot JM, Kuruvilla J, Balakumaran A, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood 2017; 130(3): 267–70. [CrossRef]
APA Akyol G, Kaynar L, ÇETİN M (2019). New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. , 12 - 17. 10.14744/etd.2019.19001
Chicago Akyol Gülşah,Kaynar Leylagul,ÇETİN Mustafa New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. (2019): 12 - 17. 10.14744/etd.2019.19001
MLA Akyol Gülşah,Kaynar Leylagul,ÇETİN Mustafa New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. , 2019, ss.12 - 17. 10.14744/etd.2019.19001
AMA Akyol G,Kaynar L,ÇETİN M New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. . 2019; 12 - 17. 10.14744/etd.2019.19001
Vancouver Akyol G,Kaynar L,ÇETİN M New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. . 2019; 12 - 17. 10.14744/etd.2019.19001
IEEE Akyol G,Kaynar L,ÇETİN M "New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases." , ss.12 - 17, 2019. 10.14744/etd.2019.19001
ISNAD Akyol, Gülşah vd. "New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases". (2019), 12-17. https://doi.org/10.14744/etd.2019.19001
APA Akyol G, Kaynar L, ÇETİN M (2019). New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. Erciyes Medical Journal, 41(1), 12 - 17. 10.14744/etd.2019.19001
Chicago Akyol Gülşah,Kaynar Leylagul,ÇETİN Mustafa New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. Erciyes Medical Journal 41, no.1 (2019): 12 - 17. 10.14744/etd.2019.19001
MLA Akyol Gülşah,Kaynar Leylagul,ÇETİN Mustafa New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. Erciyes Medical Journal, vol.41, no.1, 2019, ss.12 - 17. 10.14744/etd.2019.19001
AMA Akyol G,Kaynar L,ÇETİN M New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. Erciyes Medical Journal. 2019; 41(1): 12 - 17. 10.14744/etd.2019.19001
Vancouver Akyol G,Kaynar L,ÇETİN M New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases. Erciyes Medical Journal. 2019; 41(1): 12 - 17. 10.14744/etd.2019.19001
IEEE Akyol G,Kaynar L,ÇETİN M "New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases." Erciyes Medical Journal, 41, ss.12 - 17, 2019. 10.14744/etd.2019.19001
ISNAD Akyol, Gülşah vd. "New Way in Cancer Therapy: PD-1 Inhibitors and Hematologic Diseases". Erciyes Medical Journal 41/1 (2019), 12-17. https://doi.org/10.14744/etd.2019.19001