Yıl: 2018 Cilt: 5 Sayı: 2 Sayfa Aralığı: 869 - 880 Metin Dili: İngilizce DOI: 10.18596/jotcsa.371374

Synthesis of Stable Nano Calcite

Synthesis of calcium carbonate (CaCO3) particles in the presence of a population of carbon dioxide(CO2) bubbles was investigated in the calcium hydroxide (Ca(OH)2) solution, which is a natural stabilizer forCaCO3. Possible chemical speciation reactions were presented for an inorganic synthesis of hollow nano-CaCO3 particles. In the progress of CaCO3 synthesis, some of the particles started to dissolve at their edgesand turned into hollow nano-CaCO3 particles. Some of the pores closed at the end of crystallization as aresult of dissolution-recrystallization mechanism. Hollow nano-CaCO3 particles with sizes of about 300 nmwere synthesized with a narrow size distribution. It was concluded that the hollow nano-CaCO3 particlescould be advantageous due to lower weights and higher surface areas.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part BEng. 2008;39(6):933-61.
  • Bots P, Benning LG, Rodriguez-Blanco JD, Roncal-Herrero T, Shaw S. Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC). Cryst Growth Des. 2012;12(7):3806-14.
  • Lee KB, Park SB, Jang YN, Lee SW. Morphological control of CaCO3 films with large area: Effect of additives and self-organization under atmospheric conditions. J Colloid Interf Sci. 2011;355(1):54-60.
  • Rieger J, Kellermeier M, Nicoleau L. Formation of Nanoparticles and Nanostructures-An Industrial Perspective on CaCO3, Cement, and Polymers. Angew Chem Int Edit. 2014;53(46):12380-96.
  • Sant'Anna SSE, de Souza DA, de Araujo DM, Carvalho CD, Yoshida MI. Physico-chemical Analysis of Flexible Polyurethane Foams Containing Commercial Calcium Carbonate. Mater Res-Ibero-Am J. 2008;11(4):433-8.
  • Andreassen JP. Formation mechanism and morphology in precipitation of vaterite - nano aggregation or crystal growth? Journal of Crystal Growth. 2005;274(1-2):256-64.
  • Matahwa H, Ramiah V, Sanderson RD. Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives. Journal of Crystal Growth. 2008;310(21):4561-9.
  • Jung WM, Kang SH, Kim KS, Kim WS, Choi CK. Precipitation of calcium carbonate particles by gas-liquid reaction: Morphology and size distribution of particles in Couette-Taylor and stirred tank reactors. Journal of Crystal Growth. 2010;312(22):3331-9.
  • Kakaraniya S, Gupta A, Mehra A. Reactive precipitation in gas-slurry systems: The CO2Ca(OH)(2)-CaCO3 system. Ind Eng Chem Res. 2007;46(10):3170-9.
  • Montes-Hernandez G, Renard F, Geoffroy N, Charlet L, Pironon J. Calcite precipitation from CO2-H2O-Ca(OH)(2) slurry under high pressure of CO2. Journal of Crystal Growth. 2007;308(1):228- 36.
  • Ukrainczyk M, Kontrec J, Babic-Ivancic V, Brecevic L, Kralj D. Experimental design approach to calcium carbonate precipitation in a semicontinuous process. Powder Technol. 2007;171(3):192-9.
  • Chen J-F, Wang Y-H, Guo F, Xin-Ming, Zheng C. <Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation>. Industrial Engineering Chemical Research. 2000;39:948-54.
  • Sun B-C, Wang X-M, Chen J-M, Chu G-W, Chen J-F, Shao L. Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed. Chemical Engineering Journal. 2011;168(2):731-6.
  • Varma S, Chen P-C, Unnikrishnan G. Gas– liquid reactive crystallization for the synthesis of CaCO3 nanocrystals. Materials Chemistry and Physics. 2011;126(1-2):232-6.
  • Matsumoto M, Fukunaga T, Onoe K. Polymorph control of calcium carbonate by reactive crystallization using microbubble technique. Chemical Engineering Research and Design. 2010;88(12):1624-30.
  • López-Periago AM, Pacciani R, García-González C, Vega LF, Domingo C. A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. The Journal of Supercritical Fluids. 2010;52(3):298-305.
  • Sonawane SH, Shirsath SR, Khanna PK, Pawar S, Mahajan CM, Paithankar V, et al. An innovative method for effective micro-mixing of CO2 gas during synthesis of nano-calcite crystal using sonochemical carbonization. Chemical Engineering Journal. 2008;143(1-3):308-13.
  • Plank J, Hoffmann H, Schölkopf J, Seidl W, Zeitler I, Zhang Z. Preparation and Characterization of a Calcium Carbonate Aerogel. Research Letters in Materials Science. 2009;2009:1-3.
  • Tai CY, Chen C-k. Particle morphology, habit, and size control of using reverse microemulsion technique. Chemical Engineering Science. 2008;63(14):3632-42.
  • Kang SH, Hirasawa I, Kim WS, Choi CK. Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT. J Colloid Interface Sci. 2005;288(2):496-502.
  • Montes-Hernandez G, Renard F. Co-utilisation of alkaline solid waste and compressed-orsupercritical CO2 to produce calcite and calcite/Se0 red nanocomposite. The Journal of Supercritical Fluids. 2011;56(1):48-55.
  • Lin R-y, Zhang J-y, Bai Y-q. Mass transfer of reactive crystallization in synthesizing calcite nanocrystal. Chemical Engineering Science. 2006;61(21):7019-28.
  • Chibowski E, Holysz L, Wojcik W. Changes in Zeta-Potential and Surface Free-Energy of Calcium-Carbonate Due to Exposure to Radiofrequency Electric-Field. Colloid Surface A. 1994;92(1-2):79-85.
  • Chibowski E, Hotysz L, Szczes A. Time dependent changes in zeta potential of freshly precipitated calcium carbonate. Colloid Surface A. 2003;222(1-3):41-54.
  • Kes M. Determination of the particle interactions - rheology- surface roughness relationshipmfor dental ceramics [M.S]. İzmir: İzmir Institute of Technology; 2007.
  • Kilic S, Toprak G, Ozdemir E. Stability of CaCO3 in Ca(OH)(2) solution. Int J Miner Process. 2016;147:1-9.
  • Ulkeryildiz E, Kilic S, Ozdemir E. Rice-like hollow nano-CaCO3 synthesis. Journal of Crystal Growth. 2016;450:174-80.
  • Ulkeryildiz E, Kilic S, Ozdemir E. Nano-CaCO3 synthesis by jet flow. Colloid Surface A. 2017;512:34-40.
  • Carmona JG, Morales JG, Rodriguez-Clemente R. Rhombohedral-scalenohedral calcite transition produced by adjusting the solution electrical conductivity in the system Ca(OH)(2)-CO2-H2O. J Colloid Interf Sci. 2003;261(2):434-40.
  • Carmona JG, Morales JG, Sainz JF, Loste E, Clemente RR. The mechanism of precipitation of chain-like calcite. Journal of Crystal Growth. 2004;262(1-4):479-89.
  • Johannsen K, Rademacher S. Modelling the Kinetics of Calcium Hydroxide Dissolution in Water. Acta Hydrochimica Et Hydrobiologica. 1999;27(2):72-8.
  • Ozdemir E. Biomimetic CO2 Sequestration: 1. Immobilization of Carbonic Anhydrase within Polyurethane Foam. Energ Fuel. 2009;23:5725- 30.
  • Xu AW, Ma YR, Colfen H. Biomimetic mineralization. J Mater Chem. 2007;17(5):415-49.
  • Gunasekaran S, Anbalagan G. Spectroscopic study of phase transitions in natural calcite mineral. Spectrochim Acta A. 2008;69(4):1246- 51.
  • Montes-Hernandez G, Fernández-Martínez A, Charlet L, Tisserand D, Renard F. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide. Journal of Crystal Growth. 2008;310(11):2946-53.
  • Carmona JG, Morales JG, Sainz JF, Clemente RR. Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO2 through a Ca(OH)2 suspension in the presence of additives. Powder Technol. 2003;130(1-3):307- 15.
  • Jung WM, Kang SH, Kim W-S, Choi CK. Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette- Taylor reactor. Chemical Engineering Science. 2000;55(4):733-47.
  • Burns JR, Jachuck JJ. Monitoring of CaCO3 production on a spinning disc reactor using conductivity measurements. Aiche J. 2005;51(5):1497-507.
  • Lin RY, Zhang JY, Bai YQ. Mass transfer of reactive crystallization in synthesizing calcite nanocrystal. Chemical Engineering Science. 2006;61(21):7019-28.
  • Takemura F, Matsumoto Y. Dissolution rate of spherical carbon dioxide bubbles in strong alkaline solutions. Chemical Engineering Science. 2000;55(18):3907-17.
  • Molva M, Kilic S, Ozdemir E. Effect of carbonic anhydrase on CaCO3 crystallization in alkaline solution. Energ Fuel. 2016;30(12):10686-95.
  • Rodriguez-Blanco JD, Shaw S, Benning LG. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale. 2011;3(1):265-71.
  • Rodriguez-Blanco JD, Shaw S, Bots P, Roncal- Herrero T, Benning LG. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. J Alloy Compd. 2012;536:S477-S9.
  • Tai CY, Chen FB. Polymorphism of CaCO3 precipitated in a constant-composition environment. Aiche J. 1998;44(8):1790-8.
APA KILIÇ S (2018). Synthesis of Stable Nano Calcite. Journal of the Turkish Chemical Society, Section A: Chemistry, 5(2), 869 - 880. 10.18596/jotcsa.371374
Chicago KILIÇ Sevgi Synthesis of Stable Nano Calcite. Journal of the Turkish Chemical Society, Section A: Chemistry 5, no.2 (2018): 869 - 880. 10.18596/jotcsa.371374
MLA KILIÇ Sevgi Synthesis of Stable Nano Calcite. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.5, no.2, 2018, ss.869 - 880. 10.18596/jotcsa.371374
AMA KILIÇ S Synthesis of Stable Nano Calcite. Journal of the Turkish Chemical Society, Section A: Chemistry. 2018; 5(2): 869 - 880. 10.18596/jotcsa.371374
Vancouver KILIÇ S Synthesis of Stable Nano Calcite. Journal of the Turkish Chemical Society, Section A: Chemistry. 2018; 5(2): 869 - 880. 10.18596/jotcsa.371374
IEEE KILIÇ S "Synthesis of Stable Nano Calcite." Journal of the Turkish Chemical Society, Section A: Chemistry, 5, ss.869 - 880, 2018. 10.18596/jotcsa.371374
ISNAD KILIÇ, Sevgi. "Synthesis of Stable Nano Calcite". Journal of the Turkish Chemical Society, Section A: Chemistry 5/2 (2018), 869-880. https://doi.org/10.18596/jotcsa.371374