Yıl: 2018 Cilt: 6 Sayı: 3 Sayfa Aralığı: 644 - 658 Metin Dili: Türkçe DOI: 10.29109/gujsc.397467 İndeks Tarihi: 25-02-2020

Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi

Öz:
Sanal hücresel üretim sistemi (SHÜS) yeni ürün kabulüne izin vermekle birliktetalepteki değişkenliğe karşılık verebilmektedir. Böylece, üretim ortamında herhangi birdeğişikliğe gerek duyulmadan üretim gerçekleştiren firmalara avantajlar sunmaktadır.SHÜS için uygun üretim kontrol sisteminin belirlenmesi oldukça önemli bir konudur vebu çalışma içerisinde bu probleme odaklanılmıştır. SHÜS için en uygun alternatifinseçilmesi için dört farklı alternatif aralık değerli sezgisel bulanık analitik hiyerarşiprosesi (ADSBAHP) metoduyla beş farklı kriter ışığında değerlendirilmiştir. SonuçlarSHÜS için CONWIP üretim kontrol sistemi alternatifinin diğer alternatiflere üstünlüksağladığını göstermektedir.
Anahtar Kelime:

Konular: Bilgisayar Bilimleri, Yazılım Mühendisliği Malzeme Bilimleri, Tekstil İşletme Endüstri Mühendisliği Bilgisayar Bilimleri, Bilgi Sistemleri

Determination of Production Control System for Virtual Cellular Manufacturing System

Öz:
Virtual cellular manufacturing system (VCMS) allows production system to accept a new type of product and copes with fluctuations in demand. Therefore, it offers opportunities for manufacturing firms by designing the cells without changing the layout of production environment. Determination of proper production control system for VCMS is an important topic and this study focuses on this problem. In order to select the best production control system for the VCMS, four alternatives are evaluated under five criteria by applying interval-valued intuitionistic fuzzy analytic hierarchy process (IVIFAHP) method. The results show that CONWIP production control system alternative superior to others alternatives for VCMS with respect to criteria.
Anahtar Kelime:

Konular: Bilgisayar Bilimleri, Yazılım Mühendisliği Malzeme Bilimleri, Tekstil İşletme Endüstri Mühendisliği Bilgisayar Bilimleri, Bilgi Sistemleri
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Rajesh, K. D., Krishna, M. M., Ali, M. A., & Chalapathi, P. V. (2017). A Modified Hybrid Similarity Coefficient Based Method for Solving the Cell Formation Problem in Cellular Manufacturing System. Materials Today: Proceedings, 4(2), 1469-1477.
  • Venkataramanaiah, S. (2008). Scheduling in cellular manufacturing systems: an heuristic approach. International Journal of Production Research, 46(2), 429-449.
  • Yilmaz, O. F., Cevikcan, E., & Durmusoglu, M. B. (2016). Scheduling batches in multi hybrid cell manufacturing system considering worker resources: A case study from pipeline industry. Advances in Production Engineering & Management, 11(3), 192.
  • Norman, B. A., Tharmmaphornphilas, W., Needy, K. L., Bidanda, B., & Warner, R. C. (2002). Worker assignment in cellular manufacturing considering technical and human skills. International Journal of Production Research, 40(6), 1479-1492.
  • Aglan, C., & Durmusoglu, M. B. (2015). Lot-splitting approach of a hybrid manufacturing system under CONWIP production control: a mathematical model. International Journal of Production Research, 53(5), 1561-1583.
  • Dakov, I., Lefterova, T., & Petkova, A. (2010). Layout and Production Planning of Virtual Cellular Manufacturing Systems for Mechanical Machining. The Journal of Economic Asymmetries, 7(1), 43- 67.
  • Kesen, S. E. (2010). Sanal İmalat Hücrelerinde İş Çizelgelenmesi İçin Yeni Çözüm Yaklaşımları, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Mahdavi, I., Aalaei, A., Paydar, M. M., & Solimanpur, M. (2009, July). Production planning and cell formation in dynamic virtual cellular manufacturing systems with worker flexibility. In Computers & Industrial Engineering, 2009. CIE 2009. International Conference on (pp. 663-667). IEEE.
  • Nomden, G., & van der Zee, D. J. (2008). Virtual cellular manufacturing: Configuring routing flexibility. International Journal of Production Economics, 112(1), 439-451.
  • Grosfeld-Nir, A., Magazine, M., & Vanberkel, A. (2000). Push and pull strategies for controlling multistage production systems. International Journal of Production Research, 38(11), 2361-2375.
  • Mertins, K., & Lewandrowski, U. (1999). Inventory safety stocks of Kanban control systems. Production Planning & Control, 10(6), 520-529.
  • Spearman, M. L., Woodruff, D. L., & Hopp, W. J. (1990). CONWIP: a pull alternative to kanban. The International Journal of Production Research, 28(5), 879-894.
  • Cevikcan, E., & Durmusoglu, M. B. (2014). An integrated job release and scheduling approach on parallel machines: An application in electric wire-harness industry. Computers & Industrial Engineering, 76, 318-332.
  • Spearman, M. L., & Zazanis, M. A. (1992). Push and pull production systems: issues and comparisons. Operations research, 40(3), 521-532.
  • Steele, D. C., & Malhotra, M. K. (1997). Factors affecting performance of period batch control systems incellular manufacturing. International journal of production research, 35(2), 421-446.
  • Li, J. W., & Barnes, D. J. (2000). Investigating the factors influencing the shop performance in a job shop environment with kanban-based production control. International Journal of Production Research, 38(18), 4683-4699.
  • Ryan, S. M., & Fred Choobineh, F. (2003). Total WIP and WIP mix for a CONWIP controlled job shop. IIE Transactions, 35(5), 405-418.
  • Islam, N., & Mohamed, P. S. (2003). Coexistence of JIT and MRP in a manufacturing cell. International Journal of Modelling and Simulation, 23(4), 251-257.
  • Sharma, S., & Agrawal, N. (2009). Selection of a pull production control policy under different demand situations for a manufacturing system by AHP-algorithm. Computers & Operations Research, 36(5), 1622-1632.
  • Li, J. W. (2010). Simulation study of coordinating layout change and quality improvement for adapting job shop manufacturing to CONWIP control. International Journal of Production Research, 48(3), 879-900.
  • Moreira, M. D. R. A., & Alves, R. A. F. (2012). Input-output control order release mechanism in a job-shop: how workload control improves manufacturing operations. International Journal of Computational Science and Engineering, 7(3), 214-223.
  • Gong, Q., Yang, Y., & Wang, S. (2014). Information and decision-making delays in MRP, KANBAN, and CONWIP. International Journal of Production Economics, 156, 208-213.
  • Müller, E., Tolujew, J., & Kienzle, F. (2014). Push-Kanban–a kanban-based production control concept for job shops. Production Planning & Control, 25(5), 401-413.
  • Romagnoli, G. (2015). Design and simulation of CONWIP in the complex flexible job shop of a Make-To-Order manufacturing firm. International Journal of Industrial Engineering Computations, 6(1), 117-134.
  • Thürer, M., Land, M. J., Stevenson, M., & Fredendall, L. D. (2016). Card-based delivery date promising in high-variety manufacturing with order release control. International Journal of Production Economics, 172, 19-30.
  • Konefal, J. G. (2017). Applying factory physics to manual assembly at an aerospace fabrication site (Doctoral dissertation, Massachusetts Institute of Technology).
  • Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy sets and systems, 33(1), 37-45.
  • Xu, Z. S., & Jian, C. H. E. N. (2007). Approach to group decision making based on interval-valued intuitionistic judgment matrices. Systems Engineering-Theory & Practice, 27(4), 126-133.
  • Xu, Z. (2010). A method based on distance measure for interval-valued intuitionistic fuzzy group decision making. Information sciences, 180(1), 181-190.
  • Chen, T. Y., Wang, H. P., & Lu, Y. Y. (2011). A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: A comparative perspective. Expert Systems with Applications, 38(6), 7647-7658.
  • Chen, Z., & Yang, W. (2012). A new multiple criteria decision making method based on intuitionistic fuzzy information. Expert Systems with Applications, 39(4), 4328-4334.
  • ZHANG, Y. J., Pei-Jun, M. A., Xiao-Hong, S. U., & ZHANG, C. P. (2012). Multi-attribute group decision making under interval-valued intuitionistic fuzzy environment. Acta Automatica Sinica, 38(2), 220-227.
  • Jin, F., Pei, L., Chen, H., & Zhou, L. (2014). Interval-valued intuitionistic fuzzy continuous weighted entropy and its application to multi-criteria fuzzy group decision making. Knowledge-Based Systems, 59, 132-141.
  • Tong, X., & Yu, L. (2015). A novel MADM approach based on fuzzy cross entropy with intervalvalued intuitionistic fuzzy sets. Mathematical Problems in Engineering, 2015.
  • Onar, S. C., Oztaysi, B., Otay, İ., & Kahraman, C. (2015). Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets.Energy, 90, 274-285.
  • Kahraman, C., Cevik Onar, S., & Oztaysi, B. (2016). A comparison of wind energy investment alternatives using interval-valued intuitionistic fuzzy benefit/cost analysis. Sustainability, 8(2), 118.
  • Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Cevik Onar, S., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy EDAS method: an application to solid waste disposal site selection. Journal of Environmental Engineering and Landscape Management, 25(1), 1-12.
  • Yılmaz, Ö. F., & Durmuşoğlu, M. B. (2018). An Integrated Methodology for Order Release and Scheduling in Hybrid Manufacturing Systems: Considering Worker Assignment and Utility Workers. In Handbook of Research on Applied Optimization Methodologies in Manufacturing Systems (pp. 125-161). IGI Global.
APA YILMAZ Ö (2018). Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. , 644 - 658. 10.29109/gujsc.397467
Chicago YILMAZ Ömer Faruk Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. (2018): 644 - 658. 10.29109/gujsc.397467
MLA YILMAZ Ömer Faruk Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. , 2018, ss.644 - 658. 10.29109/gujsc.397467
AMA YILMAZ Ö Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. . 2018; 644 - 658. 10.29109/gujsc.397467
Vancouver YILMAZ Ö Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. . 2018; 644 - 658. 10.29109/gujsc.397467
IEEE YILMAZ Ö "Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi." , ss.644 - 658, 2018. 10.29109/gujsc.397467
ISNAD YILMAZ, Ömer Faruk. "Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi". (2018), 644-658. https://doi.org/10.29109/gujsc.397467
APA YILMAZ Ö (2018). Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(3), 644 - 658. 10.29109/gujsc.397467
Chicago YILMAZ Ömer Faruk Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 6, no.3 (2018): 644 - 658. 10.29109/gujsc.397467
MLA YILMAZ Ömer Faruk Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol.6, no.3, 2018, ss.644 - 658. 10.29109/gujsc.397467
AMA YILMAZ Ö Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2018; 6(3): 644 - 658. 10.29109/gujsc.397467
Vancouver YILMAZ Ö Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2018; 6(3): 644 - 658. 10.29109/gujsc.397467
IEEE YILMAZ Ö "Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi." Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6, ss.644 - 658, 2018. 10.29109/gujsc.397467
ISNAD YILMAZ, Ömer Faruk. "Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi". Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 6/3 (2018), 644-658. https://doi.org/10.29109/gujsc.397467