Yıl: 2019 Cilt: 49 Sayı: 1 Sayfa Aralığı: 1 - 10 Metin Dili: Türkçe DOI: 10.5222/TMCD.2019.001 İndeks Tarihi: 29-04-2020

Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki

Öz:
Dünyadaki başlıca sağlık sorunlarından biri olan tüberküloz, her yıl çok sayıda ölüme nedenolmaktadır. Dünya Sağlık Örgütü’nün (DSÖ) 2018 raporuna göre 2017 yılında 6.7 milyon yenitüberküloz olgusu bildirilmiştir. Hastalık etkeni, kişileri enfekte ettikten sonra çok uzun sürelatent evrede kalabilmektedir. Enfekte olan kişilerden bazıları hasta olurken, bazı kişilerde isehastalık hiçbir zaman gelişmemekte hatta bunların yaklaşık %90’ı bağışıklık sisteminin verdiğiyanıtla kendiliğinden iyileşmektedir. Birçok enfektif hastalıkta olduğu gibi, enfekte olan kişisayısı ve hasta olan kişi sayısı arasındaki farklılığa konakçı savunması ve organizmanın virülansı arasındaki denge farklılıkları neden olmaktadır. Yapılan çalışmalarda, bu farklılığın nedeniçoğunlukla, konağın bağışıklık sisteminin durumu ile ilişkilendirilmiş ancak yeterli bir yanıtolarak görülmemiştir. Bu durumda, enfektif hastalıklarla konak arasındaki ilişkiyi anlayabilmekiçin enfektif ajanlara verilen yanıtın genetik temellerinin araştırılması gerekmektedir. Bu derlemede Mycobacterium tuberculosis’e immun yanıtta ya da yatkınlıkta söz konusu olan TLRgenlerindeki polimorfizmlerin etkisini inceleyen çalışmalar özetlenmiştir.
Anahtar Kelime:

Konular: Mikrobiyoloji

The Relationship Between Tuberculosis and TLR Gene Polymorphisms

Öz:
Tuberculosis, one of the major health problems in the world, causes many deaths every year. According to the 2018 World Health Organization (WHO) report, 6.7 million new tuberculosis cases were reported in 2017. The disease can remain in the latent phase for a very long time after infecting the affected individual. While some of the infected people contract the disease, while the others never develop the disease; even about 90% of the contracted people improve and get well by the immune system’s response. As in many infectious diseases, the difference between the number of infected people and the number of people with the disease is due differences in balance between the host defense and the virulence of the organism. In the studies conducted; this difference was mostly attributed to the state of the immune system of the host, but this is not accepted as an adequate response. With these terms, the genetic basis of the response to infectious agents needs to be investigated in order to understand the relationship between infectious diseases and the host. In this review we have summarized the studies on the effect of polymorphisms of TLR genes which are involved in the immune response and the susceptibility to Mycobacterium tuberculosis.
Anahtar Kelime:

Konular: Mikrobiyoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Global Tuberculosis Report 2018. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.
  • 2. CDC. Tuberculosis. Centers for Disease Control and Prevention, 2016. http://www.cdc.gov/tb/statistics/ default.html (Erişim Tarihi: Temmuz 2017).
  • 3. Schorey JS, Schlesinger LS. Innate immune responses to tuberculosis. Microbiology Spectr. 2016;4(6). https://doi.org/10.1128/microbiolspec.TBTB2-0010-2016
  • 4. Manry J, Quintana-Murci L. A genome-wide perspective of human diversity and implications in infectious disease. Cold Spring Harb Perspect Med. 2013;3(1):a012450 https://doi.org/10.1101/cshperspect.a012450
  • 5. Fareed M, Afzal M. Single nucleotide polymorphism in genome-wide association of human population: A tool for broad spectrum service. Egypt J Med Hum Genet. 2013;14(2):123-34. https://doi.org/10.1016/j.ejmhg.2012.08.001
  • 6. Aitken N, Smith S, Schwarz C, Morin PA. Single nucleotide polymorphism (SNP) discovery in mammals : a targeted-gene approach. Mol Ecol. 2004;13(6):1423- 31. https://doi.org/10.1111/j.1365-294X.2004.02159.x
  • 7. Garvin MR, Saitoh K, Gharrett AJ. Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour. 2010;10(6):915-34. https://doi.org/10.1111/j.1755-0998.2010.02891.x
  • 8. Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet. 2000;58(4):250-64. https://doi.org/10.1034/j.1399-0004.2000.580402.x
  • 9. Daniel TM. The history of tuberculosis. Respir Med. 2006;100(11):1862-70. https://doi.org/10.1016/j.rmed.2006.08.006
  • 10. Willke Topçu A, Söyletir G, Doğanay M. Mycobacterium türlerinin genel özellikleri. Enfeksiyon Hastalıkları ve Mikrobiyolojisi, 3.Baskı, İstanbul: Nobel Kitapevleri. 2008;2277-83.
  • 11. Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol. 2011;2011:405310. https://doi.org/10.1155/2011/405310
  • 12. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature. 1997;388(6649):394-7. https://doi.org/10.1038/41131
  • 13. Botos I, Segal DM, Davies DR. The structural biology of toll-like receptors. Structure. 2011;19(4):447-59. https://doi.org/10.1016/j.str.2011.02.004
  • 14. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158-75. https://doi.org/10.1111/j.1600-065X.2012.01146.x
  • 15. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13(5):816-25. https://doi.org/10.1038/sj.cdd.4401850
  • 16. McGettrick AF, O’Neill LA. The expanding family of MyD88-like adaptors in toll-like receptor signal transduction. Mol Immunol. 2004;41(6-7):577-82. https://doi.org/10.1016/j.molimm.2004.04.006
  • 17. McGettrick AF, O’Neill LA. Localisation and trafficking of toll-like receptors: an important mode of regulation. Curr Opin Immunol. 2010;22(1):20-7. https://doi.org/10.1016/j.coi.2009.12.002
  • 18. Thoma-Uszynski S, Ochoa MT, Engele M, Sieling PA, Bo PL. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science. 2001;291:15- 44. https://doi.org/10.1126/science.291.5508.1544
  • 19. Rock FL, Hardiman G, Timans JC, Kastelein R, Bazan J F. A family of human receptors structurally related to drosophila toll. Proc Natl Acad Sci USA. 1998;95(2):588- 93. https://doi.org/10.1073/pnas.95.2.588
  • 20. Lien E, Ingalls RR. Toll-like receptors. Crit Care Med. 2002;30(1 Suppl):S1-11. https://doi.org/10.1097/00003246-200201001-00001
  • 21. Farhat K, Riekenberg S, Heine H, et al. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol. 2008;83(3):692-701. https://doi.org/10.1189/jlb.0807586
  • 22. Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immunol. 2012;3:79. https://doi.org/10.3389/fimmu.2012.00079
  • 23. Underhill DM, Ozinsky A, Hajjar AM, et al. The toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999;401(6755):811-5. https://doi.org/10.1038/44605
  • 24. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-76. https://doi.org/10.1146/annurev.immunol.21.120601.141126
  • 25. Barbalat R, Lau L, Locksley RM, Barton GM. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol. 2009;10(11):1200-7. https://doi.org/10.1038/ni.1792
  • 26. Akira S. Mammalian toll-like receptors. Curr Opin Immunol. 2003;15(1):5-11. https://doi.org/10.1016/S0952-7915(02)00013-4
  • 27. Jahantigh D, Salimi S, Alavi-Naini R, et al. Association between TLR4 and TLR9 gene polymorphisms with development of pulmonary tuberculosis in Zahedan, southeastern Iran. Scientific World Journal. 2013;2013:534053. https://doi.org/10.1155/2013/534053
  • 28. Najmi N, Kaur G, Sharma SK, Mehra NK. Human Tolllike receptor 4 polymorphisms TLR4 Asp299Gly and Thr399Ile influence susceptibility and severity of pulmonary tuberculosis in the Asian Indian population. Tissue Antigens. 2010;76(2):102-9.
  • 29. Kim HM, Park BS, Kim JI, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130(5):906-17. https://doi.org/10.1016/j.cell.2007.08.002
  • 30. Takeuchi O, Kawai T, Sanjo H, et al. TLR6: A novel member of an expanding toll-like receptor family. Gene. 1999;231(1-2):59-65. https://doi.org/10.1016/S0378-1119(99)00098-0
  • 31. Shey MS, Randhawa AK, Bowmaker M, et al. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide- and mycobacteriainduced IL-6 secretion. Genes Immun. 2010;11:7:561- 72. https://doi.org/10.1038/gene.2010.14
  • 32. Takeuchi O, Kawai T, Muhlradt PF, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immun. 2001;13(7):933-40. https://doi.org/10.1093/intimm/13.7.933
  • 33. Tantisira K, Klimecki WT, Lazarus R, et al. Toll-like receptor 6 gene (TLR6): single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma. Genes Immun. 2004;5(5):343-6. https://doi.org/10.1038/sj.gene.6364096
  • 34. Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One. 2007;2(12):e1318. https://doi.org/10.1371/journal.pone.0001318
  • 35. Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526-9. https://doi.org/10.1126/science.1093620
  • 36. Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000;11(3):362-71.
  • 37. Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740-5. https://doi.org/10.1038/35047123
  • 38. Haas T, Metzger J, Schmitz F, et al. The DNA sugar backbone 2’ deoxyribose determines toll-like receptor 9 activation. Immunity. 2008;28(3):315-23. https://doi.org/10.1016/j.immuni.2008.01.013
  • 39. Selvaraj P, Harishankar M, Singh B, Jawahar MS, Banurekha VV. Toll-like receptor and TIRAP gene polymorphisms in pulmonary tuberculosis patients of South India. Tuberculosis (Edinb). 2010;90(5):306-10. https://doi.org/10.1016/j.tube.2010.08.001
  • 40. Randhawa AK, Shey MS, Keyser A, et al. Association of human TLR1 and TLR6 deficiency with altered immune responses to bcg vaccination in south african infants. PLoS Pathog. 2011;7(8):e1002174. https://doi.org/10.1371/journal.ppat.1002174
  • 41. Baker AR, Qiu F, Randhawa AK, et al. Genetic variation in TLR genes in Ugandan and South African populations and comparison with HapMap data. PLoS One. 2012;7(10):e47597. https://doi.org/10.1371/journal.pone.0047597
  • 42. Zhang Y, Jiang T, Yang X, et al. Pulmonary tuberculosis susceptibility: A systematic review and meta-analysis. PLoS One. 2013;8(5):e63357. https://doi.org/10.1371/journal.pone.0063357
  • 43. Zhao L, Liu K, Kong X, Tao Z, Wang Y, Liu Y. Association of polymorphisms in toll-like receptors 4 and 9 with risk of pulmonary tuberculosis: A meta-analysis. Med Sci Monit. 2015;21:1097-106. https://doi.org/10.12659/MSM.893755
  • 44. Schurz H, Daya M, Möller M, Hoal EG, Salie M. TLR1, 2, 4, 6 and 9 variants associated with tuberculosis susceptibility: A systematic review and meta-analysis. PLoS One. 2015;10(10):e0139711. https://doi.org/10.1371/journal.pone.0139711
  • 45. Thada S, Valluri VL, Gaddam SL. Influence of Toll-Like receptor gene polymorphisms to tuberculosis susceptibility in humans. Scand J Immunol. 2013;78(3):221-9. https://doi.org/10.1111/sji.12066
  • 46. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol. 1999;163(7):3920-7.
  • 47. Heldwein KA, Fenton MJ. The role of toll-like receptors in immunity against mycobacterial infection. Microbes Infect. 2002;4(9):937-44. https://doi.org/10.1016/S1286-4579(02)01611-8
  • 48. Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol. 2010;8(4):296- 307. https://doi.org/10.1038/nrmicro2321
  • 49. North RJ, Jung Y. Immunity to tuberculosis. Annu Rev Immunol. 2004;22:599-623. https://doi.org/10.1146/annurev.immunol.22.012703.104635
  • 50. Wu L, Hu Y, Li D, Jiang W, Xu B. Screening toll-like receptor markers to predict latent tuberculosis infection and subsequent tuberculosis disease in a Chinese population. BMC Med Genet. 2015;16:19. https://doi.org/10.1186/s12881-015-0166-1
  • 51. DeFranco AL, Crowley M, Finn A, Hambleton J, Weinstein SL. The role of tyrosine kinases and map kinases in LPS-induced signaling. Prog Clin Biol Res. 1998;397:119-36.
  • 52. Vaizoglu RD. Investigation of some TLR polymorphisms in tuberculosis patients in Malatya. [Yüksek Lisans tezi] İnönü Üniversitesi, Malatya, 2017.
  • 53. Forget A, Skamene E, Gros P, Miailhe AC, Turcotte R. Differences in response among inbred mouse strains to infection with small doses of Mycobacterium bovis BCG. Infect Immun. 1981;32(1):42-7.
  • 54. Dorman SE, Picard C, Lammas D, et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet. 2004;364(9451):2113-21. https://doi.org/10.1016/S0140-6736(04)17552-1
  • 55. Lewis SJ, Baker I, Davey Smith G. Meta-analysis of vitamin D receptor polymorphisms and pulmonary tuberculosis risk. Int J Tuberc Lung Dis. 2005;9(10): 1174-7. https://doi.org/10.1038/jhg.2010
  • 56. Qu HQ, Fisher-Hoch SP, McCormick JB. Knowledge gaining by human genetic studies on tuberculosis susceptibility. J Hum Genet. 2011;56(3):177-82. https://doi.org/10.1038/jhg.2010.164
  • 57. Biyikli OO, Baysak A, Ece G, Oz AT, Ozhan MT, Berdeli A. Role of toll-like receptors in tuberculosis infection. Jundishapur J Microbiol. 2016;9(10):e20224. https://doi.org/10.5812/jjm.20224
  • 58. Dalgic N, Tekin D, Kayaalti Z, et al. Arg753Gln polymorphism of the human toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol. 2011;72(5):440-5. https://doi.org/10.1016/j.humimm.2011.02.001
APA VAİZOĞLU R, Acar C (2019). Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. , 1 - 10. 10.5222/TMCD.2019.001
Chicago VAİZOĞLU Reika Dilara,Acar Ceren Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. (2019): 1 - 10. 10.5222/TMCD.2019.001
MLA VAİZOĞLU Reika Dilara,Acar Ceren Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. , 2019, ss.1 - 10. 10.5222/TMCD.2019.001
AMA VAİZOĞLU R,Acar C Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. . 2019; 1 - 10. 10.5222/TMCD.2019.001
Vancouver VAİZOĞLU R,Acar C Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. . 2019; 1 - 10. 10.5222/TMCD.2019.001
IEEE VAİZOĞLU R,Acar C "Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki." , ss.1 - 10, 2019. 10.5222/TMCD.2019.001
ISNAD VAİZOĞLU, Reika Dilara - Acar, Ceren. "Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki". (2019), 1-10. https://doi.org/10.5222/TMCD.2019.001
APA VAİZOĞLU R, Acar C (2019). Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. Türk Mikrobiyoloji Cemiyeti Dergisi, 49(1), 1 - 10. 10.5222/TMCD.2019.001
Chicago VAİZOĞLU Reika Dilara,Acar Ceren Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. Türk Mikrobiyoloji Cemiyeti Dergisi 49, no.1 (2019): 1 - 10. 10.5222/TMCD.2019.001
MLA VAİZOĞLU Reika Dilara,Acar Ceren Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. Türk Mikrobiyoloji Cemiyeti Dergisi, vol.49, no.1, 2019, ss.1 - 10. 10.5222/TMCD.2019.001
AMA VAİZOĞLU R,Acar C Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. Türk Mikrobiyoloji Cemiyeti Dergisi. 2019; 49(1): 1 - 10. 10.5222/TMCD.2019.001
Vancouver VAİZOĞLU R,Acar C Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki. Türk Mikrobiyoloji Cemiyeti Dergisi. 2019; 49(1): 1 - 10. 10.5222/TMCD.2019.001
IEEE VAİZOĞLU R,Acar C "Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki." Türk Mikrobiyoloji Cemiyeti Dergisi, 49, ss.1 - 10, 2019. 10.5222/TMCD.2019.001
ISNAD VAİZOĞLU, Reika Dilara - Acar, Ceren. "Tüberküloz ve TLR Gen Polimorfizmleri Arasındaki İlişki". Türk Mikrobiyoloji Cemiyeti Dergisi 49/1 (2019), 1-10. https://doi.org/10.5222/TMCD.2019.001