Yıl: 2020 Cilt: 44 Sayı: 1 Sayfa Aralığı: 99 - 111 Metin Dili: İngilizce DOI: 10.3906/kim-1903-28

Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples

Öz:
Nitrogen-doped carbon nanodots (CDs) were prepared via the solvothermal method, using urea and triethylene glycol as the starting materials. The as-prepared CDs had individual diameters of approximately 100 nm and werein clusters of different sizes. The surface composition and optical properties of the as-prepared CDs were characterized.They exhibited multicolor emission properties in the visible range when excited with a wide wavelength range. Theaqueous solution of the CDs was used in highly sensitive tartrazine determination. The fluorescence quenching of theCDs was in a linear relationship with the concentrations of tartrazine in the range of 0.5–30.0 µM. The detection limitof the assay was 0.18 µM. Acceptable recovery results were obtained via spike-recovery experiments on cookie samples.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Rovina K, Siddiquee S, Shaarani SM. A review of extraction and analytical methods for the determination of tartrazine (E 102) in foodstuffs. Critical Reviews in Analytical Chemistry 2017; 47 (4): 309-324. doi: 10.1080/10408347.2017.1287558
  • 2. Mazlan SZ, Lee YH, Hanifah SA. A new laccase based biosensor for tartrazine. Sensors (Switzerland) 2017; 17 (12): 1-12. doi: 10.3390/s17122859
  • 3. Visweswaran B, Krishnamoorthy G. Oxidative stress by tartrazine in the testis of Wistar rats. Journal of Pharmaceutical and Biological Sciences 2012; 2 (3): 44-49.
  • 4. Karim-Nezhad G, Khorablou Z, Zamani M, Seyed Dorraji P, Alamgholiloo M. Voltammetric sensor for tartrazine determination in soft drinks using poly (p-aminobenzenesulfonic acid)/zinc oxide nanoparticles in carbon paste electrode. Journal of Food and Drug Analysis 2017; 25 (2): 293-301. doi: 10.1016/j.jfda.2016.10.002
  • 5. Zuo P, Lu X, Sun Z, Guo Y, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta 2016; 183 (2): 519-542. doi: 10.1007/s00604-015-1705-3
  • 6. Tuerhong M, Xu Y, Yin XB. Review on carbon dots and their applications. Chinese Journal of Analytical Chemistry 2017; 45 (1): 139-150. doi: 10.1016/S1872-2040(16)60990-8
  • 7. Yang Z, Li Z, Xu M, Zhang L, Zhang J et al. Controllable synthesis of fluorescent carbon. Micro and Nano Letters 2013; 5 (4): 247-259.
  • 8. Choi Y, Choi Y, Kwon OH, Kim BS. Carbon dots: bottom-up syntheses, properties, and light-harvesting applications. Chemistry – An Asian Journal 2018; 13 (6): 586-598. doi: 10.1002/asia.201701736
  • 9. Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomedicine & Pharmacotherapy 2017; 87 (88): 209-222. doi: 10.1016/j.biopha.2016.12.108
  • 10. Li H, He X, Kang Z, Huang H, Liu Y et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition 2010; 49 (26): 4430-4434. doi: 10.1002/anie.200906154
  • 11. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chemical Society Reviews 2015; 44 (1): 362-381. doi: 10.1039/c4cs00269e
  • 12. Dinc S, Kara M. Synthesis and applications of carbon dots from food and natural products: a mini-review. Journal of Apitherapy and Nature 2018; 1 (1): 33-37.
  • 13. Zhang J, Yu SH. Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today 2016; 19 (7): 382-393. doi: 10.1016/j.mattod.2015.11.008
  • 14. Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: a review. Materials Today Chemistry 2018; 8: 96-109. doi: 10.1016/j.mtchem.2018.03.003
  • 15. Dinç S. A simple and green extraction of carbon dots from sugar beet molasses: biosensor applications. Sugar Industry 2016; 9: 560-564.
  • 16. Cao L, Wang X, Meziani MJ, Lu F, Wang H et al. Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society 2007; 129 (37): 11318-11319. doi: 10.1021/ja073527l
  • 17. Tan HC, Zhao WH, Qiu Q, Zhang R, Zuo Y et al. Green synthesis of nitrogen-doped fluorescent carbon quantum dots for selective detection of iron. Fullerenes Nanotubes and Carbon Nanostructures 2017; 25 (7): 417-422. doi: 10.1080/1536383X.2017.1326102
  • 18. Wang Y, Wang C, Guo H, Wang Y, Huang Z. A nitrogen-doped three-dimensional carbon framework for high performance sodium ion batteries. RSC Advances 2017; 7 (3): 1588-1592. doi: 10.1039/c6ra27088c
  • 19. Xu H, Yang X, Li G, Zhao C, Liao X. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. Journal of Agricultural and Food Chemistry 2015; 63 (30): 6707-6714. doi: 10.1021/acs.jafc.5b02319
  • 20. Chatzimitakos T, Kasouni A, Sygellou L, Avgeropoulos A, Troganis A et al. Two of a kind but different: luminescent carbon quantum dots from citrus peels for iron and tartrazine sensing and cell imaging. Talanta 2017; 175: 305-312. doi: 10.1016/j.talanta.2017.07.053
  • 21. Taniguchi M, Lindsey JS. Database of absorption and fluorescence spectra of >300 common compounds for use in photochem CAD. Photochemistry and Photobiology 2018; 94: 290-327.
  • 22. Çağılcı OC, Gümrükçüoğlu A, Alp H, Vanlı E, Ocak Ü et al. A simple fluorimetric method to determine Sudan I dye in spices. Karadeniz Chemical Science and Technology 2017; 01: EA.1-EA.4.
  • 23. Lyth SM, Ma W, Liu J, Daio T, Sasaki K et al. Solvothermal synthesis of superhydrophobic hollow carbon nanoparticles from a fluorinated alcohol. Nanoscale 2015; 7: 16087-16093. doi: 10.1039/c5nr03484a
  • 24. Sun L, Teng TH, Rashid MH, Krysmann M, Dallas P et al. Electrogenerated chemiluminescence from carbon dots. Materials Research Society Symposium Proceedings 2011; 1284: 131-136. doi: 10.1557/opl.2011.650
  • 25. Guo B, Zebda R, Drake SJ, Sayes CM. Synergistic effect of co-exposure to carbon black and Fe 2 O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Particle and Fibre Toxicology 2009; 6: 1-13. doi: 10.1186/1743- 8977-6-4
  • 26. Tripathi KM, Tran TS, Tung TT, Losic D, Kim T. Water soluble fluorescent carbon nanodots from biosource for cells imaging. Journal of Nanomaterials 2017; 2017: 7029731. doi: 10.1155/2017/7029731
  • 27. Siddique AB, Pramanick AK, Chatterjee S, Ray M. Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol. Scientific Reports 2018; 8 (1): 1-10. doi: 10.1038/s41598-018-28021-9
  • 28. Kelarakis, A. From highly graphitic to amorphous carbon dots: A critical review. MRS Energy and Sustainability 2014; 1: E2. doi: 10.1557/mre.2014.7
  • 29. Bhaisare ML, Talib A, Khan MS, Pandey S, Wu HF. Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchimica Acta 2015; 182 (13-14): 2173-2181. doi: 10.1007/s00604-015-1541-5
  • 30. Essner JB, Laber CH, Ravula S, Polo-Parada L, Baker GA. Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chemistry 2016; 18 (1): 243-250. doi: 10.1039/c5gc02032h
  • 31. De B, Karak NA. Green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances 2013; 3 (22): 8286-8290. doi: 10.1039/c3ra00088e
  • 32. Pillar-Little T, Kim DY. Differentiating the impact of nitrogen chemical states on optical properties of nitrogendoped graphene quantum dots. RSC Advances 2017; 7 (76): 48263-48267. doi: 10.1039/c7ra09252k
  • 33. Ding W, Wei Z, Chen S, Qi X, Yang T et al. Space-confinement-induced synthesis of pyridinic- and pyrrolicnitrogen-doped graphene for the catalysis of oxygen reduction. Angewandte Chemie International Edition 2013; 52 (45): 11755-11759. doi: 10.1002/anie.201303924
  • 34. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS et al. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society 2006; 128 (24): 7756-7757. doi: 10.1021/ja062677d
  • 35. Sun C, Zhang Y, Wang P, Yang Y, Wang Y et al. Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe 3+ . Nanoscale Research Letters 2016; 11 (1): 1-9. doi: 10.1186/s11671-016-1326-8
  • 36. Gong J, An X, Yan X. A novel rapid and green synthesis of highly luminescence carbon dots with good biocompatibility for cell imaging. New Journal of Chemistry 2014; 38: 1376-1379. doi: 10.1039/C3NJ01320K
  • 37. Xu Q, Li B, Ye Y, Cai W, Li W et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Research 2018; 11 (7): 3691-3701. doi: 10.1007/s12274-017-1937-0
  • 38. Yoshioka N, Ichihashi K. Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection. Talanta 2008; 74 (5): 1408-1413. doi: 10.1016/j.talanta.2007.09.015
  • 39. Abu Shawish HM, Ghalwa NA, Saadeh SM, Harazeen HE. Development of novel potentiometric sensors for determination of tartrazine dye concentration in foodstuff products. Food Chemistry 2013; 138 (1): 126-132. doi: 10.1016/j.foodchem.2012.10.048
  • 40. Alves SP, Brum DM, Branco de Andrade ÉC, Pereira Netto AD. Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection. Food Chemistry 2008; 107 (1): 489-496. doi: 10.1016/j.foodchem.2007.07.054
  • 41. Zhao L, Zeng B, Zhao F. Electrochemical determination of tartrazine using a molecularly imprinted polymer – multiwalled carbon nanotubes - ionic liquid supported Pt nanoparticles composite film coated electrode. Electrochimica Acta 2014; 146: 611-617. doi: 10.1016/j.electacta.2014.08.108
  • 42. Sahraei R, Farmany A, Mortazavi SS. A nanosilver-based spectrophotometry method for sensitive determination of tartrazine in food samples. Food Chemistry 2013; 138 (2-3): 1239-1242. doi: 10.1016/j.foodchem.2012.11.029
  • 43. Hajimahmoodi M, Afsharimanesh M, Moghaddam G, Sadeghi N, Oveisi MR et al. Determination of eight synthetic dyes in foodstuffs by green liquid chromatography. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. 2013; 30 (5): 780-785. doi: 10.1080/19440049.2013.774465
APA GÜMRÜKÇÜOĞLU A, BAŞOĞLU A, KOLAYLI S, DİNÇ S, KARA M, OCAK M, OCAK Ü (2020). Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples. Turkish Journal of Chemistry, 44(1), 99 - 111. 10.3906/kim-1903-28
Chicago GÜMRÜKÇÜOĞLU Abidin,BAŞOĞLU Aysel,KOLAYLI Sevgi,DİNÇ SALİHA,KARA Meryem,OCAK Miraç,OCAK Ümmühan Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples. Turkish Journal of Chemistry 44, no.1 (2020): 99 - 111. 10.3906/kim-1903-28
MLA GÜMRÜKÇÜOĞLU Abidin,BAŞOĞLU Aysel,KOLAYLI Sevgi,DİNÇ SALİHA,KARA Meryem,OCAK Miraç,OCAK Ümmühan Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples. Turkish Journal of Chemistry, vol.44, no.1, 2020, ss.99 - 111. 10.3906/kim-1903-28
AMA GÜMRÜKÇÜOĞLU A,BAŞOĞLU A,KOLAYLI S,DİNÇ S,KARA M,OCAK M,OCAK Ü Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples. Turkish Journal of Chemistry. 2020; 44(1): 99 - 111. 10.3906/kim-1903-28
Vancouver GÜMRÜKÇÜOĞLU A,BAŞOĞLU A,KOLAYLI S,DİNÇ S,KARA M,OCAK M,OCAK Ü Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples. Turkish Journal of Chemistry. 2020; 44(1): 99 - 111. 10.3906/kim-1903-28
IEEE GÜMRÜKÇÜOĞLU A,BAŞOĞLU A,KOLAYLI S,DİNÇ S,KARA M,OCAK M,OCAK Ü "Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples." Turkish Journal of Chemistry, 44, ss.99 - 111, 2020. 10.3906/kim-1903-28
ISNAD GÜMRÜKÇÜOĞLU, Abidin vd. "Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples". Turkish Journal of Chemistry 44/1 (2020), 99-111. https://doi.org/10.3906/kim-1903-28