Yıl: 2020 Cilt: 44 Sayı: 2 Sayfa Aralığı: 95 - 173 Metin Dili: İngilizce DOI: 10.3906/fiz-2003-15 İndeks Tarihi: 04-05-2020

Four-quark exotic mesons

Öz:
We review our investigations devoted to the analysis of the resonances Zc(3900), Zc(4430), Zc(4100),X(4140), X(4274), a1(1420), Y (4660), X(2100), X(2239), and Y (2175) discovered in various processes by Belle,BaBar, BESIII, D0, CDF, CMS, LHCb and COMPASS collaborations. These resonances are considered as seriouscandidates to four-quark (tetraquark) exotic mesons. We treat all of them as diquark-antidiquark states with relevantspin-parities, find their masses and couplings, as well as explore their dominant strong decay channels. Calculationsare performed in the context of the QCD sum rule method. Thus, the spectroscopic parameters of the tetraquarksare evaluated using the two-point sum rules. For computations of the strong couplings GTM1M2 , corresponding tothe vertices TM1M2 and necessary to find the partial widths of the strong decays T → M1M2 , we employ either thethree-point or full/approximate versions of the QCD light-cone sum rules methods. Obtained results are compared withavailable experimental data, and with predictions of other theoretical studies.
Anahtar Kelime:

Konular: Fizik, Uygulamalı Fizik, Katı Hal Fizik, Atomik ve Moleküler Kimya Fizik, Akışkanlar ve Plazma Fizik, Nükleer Fizik, Matematik Fizik, Partiküller ve Alanlar
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] Jaffe RL. Multiquark hadrons. I. Phenomenology of Q2 ¯Q2 mesons. Physical Review D 1977; 15: 267. doi: 10.1103/PhysRevD.15.267
  • [2] Kim H, Kim KS, Cheoun MK, Oka M. Tetraquark mixing framework for isoscalar resonances in light mesons. Physical Review D 2018; 97: 094005. doi: 10.1103/PhysRevD.97.094005
  • [3] Agaev SS, Azizi K, Sundu H. The structure, mixing angle, mass and couplings of the light scalar f0(500) and f0(980) mesons. Physics Letters B 2018; 781: 279. doi: 10.1016/j.physletb.2018.03.085.
  • [4] Agaev SS, Azizi K, Sundu H. The strong decays of the light scalar mesons f0(500) and f0(980). Physics Letters B 2018; 784: 266. doi: 10.1016/j.physletb.2018.07.042
  • [5] Agaev SS, Azizi K, Sundu H. The nonet of the light scalar tetraquarks: The mesons a0(980) and K ∗ 0 (800). Physics Letters B 2019; 789: 405. doi: 10.1016/j.physletb.2018.12.059
  • [6] Jaffe RL, Perhaps a Stable Dihyperon. Physical Review Letters 1977; 38: 195 Erratum: [Physical Review Letters 1977; 38: 617]. doi:10.1103/PhysRevLett.38.617, 10.1103/PhysRevLett.38.195
  • [7] Farrar GR, Zaharijas G. Nuclear and nucleon transitions of the H dibaryon. Physical Review D 2004; 70: 014008. doi: 10.1103/PhysRevD.70.014008
  • [8] Farrar GR. 6-quark Dark Matter. PoS ICRC 2018; 2017: 929. doi: 10.22323/1.301.0929
  • [9] Farrar GR. A precision test of the nature of Dark Matter and a probe of the QCD phase transition. arXiv:1805.03723.
  • [10] Azizi K, Agaev SS, Sundu H. The Scalar Hexaquark uuddss: a Candidate to Dark Matter? arXiv:1904.09913.
  • [11] Ader JP, Richard JM, Taxil P. Do Narrow Heavy Multiquark States Exist? Physical Review D 1982; 25: 2370. doi: 10.1103/PhysRevD.25.2370
  • [12] Lipkin HJ. A Model Independent Approach To Multiquark Bound States. Physics Letters B 1986; 172: 242. doi: 10.1016/0370-2693(86)90843-9
  • [13] Zouzou S, Silvestre-Brac B, Gignoux C, Richard JM. Four quark bound states. Zeitschrift für Physik C 1986; 30: 457. doi: 10.1007/BF01557611
  • [14] Carlson J, Heller L, Tjon JA. Stability of dimesons. Physical Review D 1988; 37: 744. doi: 10.1103/PhysRevD.37.744
  • [15] Manohar AV, Wise MB. Exotic QQ¯q¯q states in QCD. Nuclear Physics B 1993; 399: 17. doi: 10.1016/0550- 3213(93)90614-U
  • [16] Balitsky II, Diakonov D, Yung AV. Exotic mesons with Jpc = 1 −+ from QCD sum rules. Physics Letters B 1982; 112: 71.
  • [17] Govaerts J, Reinders LJ, Rubinstein HR, Weyers J. Hybrid quarkonia from QCD sum rules. Nuclear Physics B 1985; 258: 215.
  • [18] Govaerts J, Reinders LJ, Weyers J. Radial excitations and exotic mesons via QCD sum rules. Nuclear Physics B 1985; 262: 575.
  • [19] Balitsky II, Diakonov D, Yung AV. Exotic mesons with JPC = 1 −+ , strange and nonstrange. Zeitschrift für Physik C 1986; 33: 265.
  • [20] Braun VM, Kolesnichenko AV. Exotic scalar JPC = 1+− meson from QCD sum rules. Physics Letters B 1986; 175: 485.
  • [21] Braun VM, Shabelski YM. Four quark exotic mesons ¯u¯usd from QCD sum rules. Soviet Journal of Nuclear Physics 1989; 50: 306.
  • [22] Belle Collaboration [Choi SK et al.]. Observation of a narrow charmonium - like state in exclusive B ± → K ± π+π − J/ψ decays. Physical Review Letters 2003; 91: 262001. doi: 10.1103/PhysRevLett.91.262001
  • [23] D0 Collaboration [Abazov VM et al.]. Observation and properties of the X(3872) decaying to J/ψπ+π − in p¯p collisions at √ s = 1.96 TeV. Physical Review Letters 2004; 93: 162002. doi: 10.1103/PhysRevLett.93.162002
  • [24] CDF Collaboration [Acosta D et al.]. Observation of the narrow state X(3872) → J/ψπ+π − in ¯pp collisions at √ s = 1.96 TeV. Physical Review Letters 2004; 93: 072001. doi: 10.1103/PhysRevLett.93.072001
  • [25] BaBar Collaboration [Aubert B et al.]. Study of the B → J/ψK − π+π − decay and measurement of the B → X(3872)K − branching fraction. Physical Review D 2005; 71: 071103. doi: 10.1103/PhysRevD.71.071103
  • [26] Belle Collaboration [Choi SK et al.]. Observation of a resonance-like structure in the pi+ψ ′ mass distribution in exclusive B → Kπ+ψ ′ decays. Physical Review Letters 2008; 100: 142001. doi: 10.1103/PhysRevLett.100.142001
  • [27] Belle Collaboration [Mizuk R et al.]. Dalitz analysis of B → Kπ+ψ ′ decays and the Z(4430)+ . Physical Review D 2009; 80: 031104. doi: 10.1103/PhysRevD.80.031104
  • [28] Belle Collaboration [Chilikin K et al.]. Experimental constraints on the spin and parity of the Z(4430)+ . Physical Review D 2013; 88: 074026. doi: 10.1103/PhysRevD.88.074026
  • [29] Belle Collaboration [Chilikin K et al.]. Observation of a new charged charmoniumlike state in ¯B0 → J/ψK −π+decays. Physical Review D 2014; 90: 112009. doi: 10.1103/PhysRevD.90.112009
  • [30] LHCb Collaboration [Aaij R et al.]. Observation of the resonant character of the Z(4430) − state. Physical Review Letter 2014; 112: 222002. doi: 10.1103/PhysRevLett.112.222002
  • [31] LHCb Collaboration [Aaij R et al.]. Model-independent confirmation of the Z(4430) − state. Physical Review D 2015; 92: 112009. doi: 10.1103/PhysRevD.92.112009
  • [32] BESIII Collaboration [Ablikim M et al.]. Observation of a Charged Charmoniumlike Structure in e+e − to π+π − J/ψ at √ s = 4.26GeV . Physical Review Letters 2013; 110: 252001.
  • [33] Belle Collaboration [Liu ZQ et al.]. Study of e+e − → π+π − J/ψ and Observation of a Charged Charmoniumlike State at Belle. Physical Review Letters 2013; 110: 252002.
  • [34] Xiao T, Dobbs S, Tomaradze A, Seth KK. Observation of the Charged Hadron Z ± c (3900) and Evidence for the Neutral Z0 c (3900) in e+e − → ππJ/ψ at √ s = 4170 MeV. Physics Letters B 2013; 727: 366. doi: 10.1016/j.physletb.2013.10.041
  • [35] BESIII Collaboration [Ablikim M et al.]. Observation of Zc(3900)0 in e+e − → π0π0J/ψ. Physical Review Letters 2015; 115: 112003. doi: 10.1103/PhysRevLett.115.112003
  • [36] D0 Collaboration [Abazov VM et al.]. Observation of a B0 sπ ± state. Physical Review Letters 2016; 117: 022003. doi: 10.1103/PhysRevLett.117.022003
  • [37] LHCb Collaboration [Aaij R et al.]. Search for structure in the B0 sπ ± invariant mass spectrum. Physical Review Letters 2016; 117: 152003. doi: 10.1103/PhysRevLett.117.152003
  • [38] LHCb Collaboration [Aaij R et al.]. Observation of J/ψϕ structures consistent with exotic states from amplitude analysis of B+ → J/ψϕK+ decays. Physical Review Letters 2017; 118: 022003. doi: 10.1103/Phys- RevLett.118.022003
  • [39] LHCb Collaboration [Aaij R et al.]. Amplitude analysis of B+ → J/ψϕK+ decays. Physical Review D 2017; 95: 012002. doi:10.1103/PhysRevD.95.012002
  • [40] CDF Collaboration [Aaltonen T et al.]. Evidence for a Narrow Near-Threshold Structure in the J/ψϕ Mass Spectrum in B+ → J/ψϕK+ Decays. Physical Review Letters 2009; 102: 242002. doi: 10.1103/PhysRevLett.102.242002
  • [41] CMS Collaboration [Chatrchyan S et al.]. Observation of a peaking structure in the J/ψϕ mass spectrum from B ± → J/ψϕK ± decays. Physics Letters B 2014; 734: 261. doi: 10.1016/j.physletb.2014.05.055
  • [42] D0 Collaboration [Abazov VM et al.]. Search for the X(4140) state in B+ → J/ψϕK+ decays with the D0 detector. Physical Review D 2014; 89: 012004. doi: 10.1103/PhysRevD.89.012004
  • [43] Belle Collaboration [Wang XL et al.]. Observation of Two Resonant Structures in e+e− → π+π − ψ(2S) via Initial State Radiation at Belle. Physical Review Letters 2007; 99: 142002.
  • [44] Belle Collaboration [Wang XL et al.]. Measurement of e+e − → π+π − ψ(2S) via Initial State Radiation at Belle. Physical Review D 2015; 91: 112007. doi: 10.1103/PhysRevD.91.112007
  • [45] Belle Collaboration [Pakhlova G et al.]. Observation of a near-threshold enhancement in the e+e → Λ+ c Λ − c cross section using initial-state radiation. Physical Review Letters 2008; 101: 172001. doi: 10.1103/PhysRevLett.101.172001
  • [46] BaBar Collaboration [Lees JP et al.]. Study of the reaction e+e − → ψ(2S)π − π − via initial-state radiation at BaBar. Physical Review D 2014; 89: 111103. doi: 10.1103/PhysRevD.89.111103
  • [47] LHCb Collaboration [Aaij R et al.]. Evidence for an ηc(1S)π − resonance in B0 → ηc(1S)K+π − decays. European Physical Journal C 2018; 78: 1019. doi: 10.1140/epjc/s10052-018-6447-z
  • [48] Shifman MA, Vainshtein AI, Zakharov VI. QCD and Resonance Physics. Theoretical Foundations. Nuclear Physics B 1979; 147: 385. doi: 10.1016/0550-3213(79)90022-1
  • [49] Shifman MA, Vainshtein AI. Zakharov VI. QCD and Resonance Physics: Applications. Nuclear Physics B 1979; 147: 448. doi: 10.1016/0550-3213(79)90023-3
  • [50] Balitsky II, Braun VM, Kolesnichenko AV. Radiative Decay Σ+ → pγ in Quantum Chromodynamics. Nuclear Physics B 1989; 312: 509. doi: 10.1016/0550-3213(89)90570-1
  • [51] Belyaev VM, Braun VM, Khodjamirian A, Ruckl R. D ∗ Dπ and B ∗ Bπ couplings in QCD. Physical Review D 1995; 51: 6177. doi: 10.1103/PhysRevD.51.6177
  • [52] Ioffe BL, Smilga AV. Nucleon Magnetic Moments and Magnetic Properties of Vacuum in QCD. Nuclear Physics B 1984; 232: 109. doi: 10.1016/0550-3213(84)90364-X
  • [53] Agaev SS, Azizi K, Sundu H. Strong Z+ c (3900) → J/ψπ+; ηcρ+ decays in QCD. Physical Review D 2016; 93: 074002. doi: 10.1103/PhysRevD.93.074002
  • [54] Agaev SS, Azizi K, Sundu H. Application of the QCD light cone sum rule to tetraquarks: the strong vertices XbXbρ and XcXcρ. Physical Review D 2016; 93: 114036. doi: 10.1103/PhysRevD.93.114036
  • [55] Jaffe RL. Exotica. Physics Reports 2005; 409: 1. doi: 10.1016/j.physrep.2004.11.005
  • [56] Swanson ES. The New heavy mesons: A Status report. Physics Reports 2006; 429: 243.
  • [57] Klempt E, Zaitsev A. Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD inspired concepts. Physics Reports 2007; 454: 1. doi: 0.1016/j.physrep.2007.07.006
  • [58] Godfrey S, Olsen SL. The Exotic XYZ Charmonium-like Mesons. Annual Review of Nuclear and Particle Science 2008; 58: 51. doi: 10.1146/annurev.nucl.58.110707.171145
  • [59] Esposito A, Guerrieri AL, Piccinini F, Pilloni A, Polosa AD. Four-Quark Hadrons: an Updated Review. International Journal of Modern Physics A 2014; 30: 1530002. doi: 10.1142/S0217751X15300021
  • [60] Chen HX, Chen W, Liu X, Zhu SL. The hidden-charm pentaquark and tetraquark states. Physics Reports 2016; 639: 1. doi: 10.1016/j.physrep.2016.05.004
  • [61] Chen HX, Chen W, Liu X, Liu YR, Zhu SL. A review of the open charm and open bottom systems. Reports on Progress in Physics 2017; 80: 076201. doi: 10.1088/1361-6633/aa6420
  • [62] Esposito A, Pilloni A, Polosa AD. Multiquark Resonances. Physics Reports 2017; 668: 1. doi: 10.1016/j.physrep.2016.11.002
  • [63] Ali A, Lange JS, Stone S. Exotics: Heavy Pentaquarks and Tetraquarks. Progress in Particle and Nuclear Physics 2017; 97: 123. doi: 10.1016/j.ppnp.2017.08.003
  • [64] Olsen SL, Skwarnicki T, Zieminska D. Nonstandard heavy mesons and baryons: Experimental evidence. Reviews of Modern Physics 2018; 90: 015003. doi: 10.1103/RevModPhys.90.015003
  • [65] Albuquerque RM, Dias JM, Khemchandani KP, Martinez Torres A, Navarra FS et al. QCD Sum Rules Approach to the X, Y and Z States. Journal of Physics G 2019; 46: 093002. doi: 10.1088/1361-6471/ab2678
  • [66] Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen CP et al. The XY Z states: experimental and theoretical status and perspectives. arXiv:1907.07583.
  • [67] Liu XH, Zhao Q, Close FE. Search for tetraquark candidate Z(4430) in meson photoproduction. Physical Review D 2008; 77: 094005. doi: 10.1103/PhysRevD.77.094005
  • [68] Ebert D, Faustov RN, Galkin VO. Excited heavy tetraquarks with hidden charm. European Physical Journal C 2008; 58: 399. doi: 10.1140/epjc/s10052-008-0754-8
  • [69] Bracco ME, Lee SH, Nielsen M, Rodrigues da Silva R. The Meson Z+(4430) as a tetraquark state. Physics Letters B 2009; 671: 240. doi: 10.1016/j.physletb.2008.12.021
  • [70] Maiani L, Polosa AD, Riquer V. The charged Z(4430) in the diquark-antidiquark picture. New Journal of Physics 2008; 10: 073004. doi: 10.1088/1367-2630/10/7/073004
  • [71] Wang ZG. Mass spectrum of the axial-vector hidden charmed and hidden bottom tetraquark states. European Physical Journal C 2010; 70: 139. doi: 10.1140/epjc/s10052-010-1447-7
  • [72] Maiani L, Piccinini F, Polosa AD, Riquer V. The Z(4430) and a new paradigm for spin interactions in tetraquarks. Physical Review D 2014; 89: 114010.
  • [73] Wang ZG. Analysis of the Z(4430) as the first radial excitation of the Zc(3900). Communications in Theoretical Physics 2015; 63: 325. doi: 10.1088/0253-6102/63/3/325
  • [74] Agaev SS, Azizi K, Sundu H. Treating Zc(3900) and Z(4430) as the ground-state and first radially excited tetraquarks. Physical Review D 2017; 96(3): 034026. doi: 10.1103/PhysRevD.96.034026
  • [75] Lee SH, Mihara A, Navarra FS, Nielsen M. QCD sum rules study of the meson Z +(4430). Physics Letters B 2008; 661: 28. doi: 10.1016/j.physletb.2008.01.062
  • [76] Liu X, Liu YR, Deng WZ, Zhu SL. Z+(4430) as a D ′ 1D ∗ (D1D ∗ ) molecular state. Physical Review D 2008; 77: 094015. doi: 10.1103/PhysRevD.77.094015
  • [77] Braaten E, Lu M. Line Shapes of the Z(4430). Physical Review D 2009; 79: 051503. doi: 10.1103/Phys- RevD.79.051503 [78] Branz T, Gutsche T, Lyubovitskij VE. Hidden-charm and radiative decays of the Z(4430) as a hadronic D1D¯∗
  • bound state. Physical Review D 2010; 82: 054025. doi: 10.1103/PhysRevD.82.054025
  • [79] Goerke F, Gutsche T, Ivanov MA, Korner JG, Lyubovitskij VE et al. Four-quark structure of Zc(3900) , Z(4430) and Xb(5568) states. Physical Review D 2016; 94: 094017. doi: 10.1103/PhysRevD.94.094017
  • [80] Rosner JL. Threshold effect and π ± ψ(2S) peak. Physical Review D 2007; 76: 114002. doi: 10.1103/Phys- RevD.76.114002
  • [81] Dubynskiy S, Voloshin MB. Hadro-Charmonium. Physics Letters B 2008; 666: 344. doi: 10.1016/j.physletb.2008.07.086
  • [82] Dias JM, Navarra FS, Nielsen M, Zanetti CM. Z+ c (3900) decay width in QCD sum rules. Physical Review D 2013; 88: 016004.
  • [83] Wang ZG, Huang T. Analysis of the X(3872), Zc(3900) and Zc(3885) as axial-vector tetraquark states with QCD sum rules. Physical Review D 2014; 89: 054019.
  • [84] Deng Ping CJ, Wang F. Interpreting Zc(3900) and Zc(4025)/Zc(4020) as charged tetraquark states. Physical Review D 2014; 90: 054009.
  • [85] Wang ZG, Huang T. Possible assignments of the X(3872), Zc(3900) and Zb(10610) as axial-vector molecular states. European Physical Journal C 2014; 74: 2891. doi: 10.1140/epjc/s10052-014-2891-6
  • [86] Wilbring E., Hammer HW, Meisner UG. Electromagnetic Structure of the Zc(3900). Physics Letters B 2013; 726: 326. doi: 10.1016/j.physletb.2013.08.059
  • [87] Dong Y, Faessler A, Gutsche T, Lyubovitskij VE. Strong decays of molecular states Z+c and Z′ + c . Physical Review D 2013; 88: 014030. doi: 10.1103/PhysRevD.88.014030
  • [88] Ke HW, Wei ZT, Li XQ. Is Zc(3900) a molecular state. European Physical Journal C 2013; 73: 2561. doi: 10.1140/epjc/s10052-013-2561-0
  • [89] Gutsche Kesenheimer TM, Lyubovitskij VE. Radiative and dilepton decays of the hadronic molecule Z+ c (3900). Physical Review D 2014; 90: 094013. doi: 10.1103/PhysRevD.90.094013
  • [90] Esposito A, Guerrieri AL, Pilloni A. Probing the nature of Z(′) c states via the ηcρ decay. Physics Letters B 2015; 746: 194. doi: 10.1016/j.physletb.2015.04.057
  • [91] Chen DY, Dong YB. Radiative decays of the neutral Zc(3900). Physical Review D 2016; 93: 014003. doi: 10.1103/PhysRevD.93.014003
  • [92] Gong QR, Guo ZH, Meng C, Tang GY, Wang YF et al. Zc(3900) as a D ¯D ∗ molecule from the pole counting rule. Physical Review D 2016; 94: 114019. doi: 10.1103/PhysRevD.94.114019
  • [93] Ke HW, Li XQ. Study on decays of Zc(4020) and Zc(3900) into hc + π. European Physical Journal C 2016; 76: 334. doi: 10.1140/epjc/s10052-016-4183-9
  • [94] Swanson ES. Zb and Zc Exotic States as Coupled Channel Cusps. Physical Review D 2015; 91: 034009. doi: 10.1103/PhysRevD.91.034009
  • [95] HAL QCD Collaboration [Ikeda Y et al.]. Fate of the Tetraquark Candidate Zc (3900) from Lattice QCD. Physical Review Letters 2016; 117: 242001. doi: 10.1103/PhysRevLett.117.242001 [96] Particle Data Group [Tanabashi M et al.]. Physical Review D 2018; 98: 030001.
  • [97] Negash H, Bhatnagar S. Spectroscopy of ground and excited states of pseudoscalar and vector charmonium and bottomonium. International Journal of Modern Physics E 2016; 25: 1650059. doi: 10.1142/S0218301316500592
  • [98] Ball P, Braun VM. Higher twist distribution amplitudes of vector mesons in QCD: Twist - 4 distributions and meson mass corrections. Nuclear Physics B 1999; 543: 201. doi: 10.1016/S0550-3213(99)00014-0
  • [99] Ball P, Braun VM, Lenz A. Twist-4 distribution amplitudes of the K* and phi mesons in QCD. JHEP 2007; 0708: 090. doi: 10.1088/1126-6708/2007/08/090
  • [100] Wang ZG. Lowest vector tetraquark states: Y (4260/4220) or Zc(4100). European Physical Journal C 2018; 78: 933.
  • [101] Wu J, Liu X, Liu YR, Zhu SL. Systematic studies of charmonium-, bottomonium-, and Bc -like tetraquark states. Physical Review D 2019; 99: 014037.
  • [102] Voloshin MB. Zc(4100) and Zc(4200) as hadrocharmonium. Physical Review D 2018; 98: 094028.
  • [103] Cao X, Dai JP. The spin parity of Z − c (4100), Z+ 1 (4050) and Z+ 2 (4250). Physical Review D 2019; 100: 054004.
  • [104] Sundu H, Agaev SS, Azizi K. New charged resonance Z − c (4100): the spectroscopic parameters and width. European Physical Journal C 2019; 79: 215. doi: 10.1140/epjc/s10052-019-6737-0
  • [105] Wang ZG. Analysis of the mass and width of the X ∗ (3860) with QCD sum rules. European Physical Journal A 2017; 53: 192. doi: 10.1140/epja/i2017-12390-6
  • [106] Belle Collaboration [Chilikin K et al.]. Observation of an alternative χc0(2P) candidate in e+e − → J/ψD ¯D . Physical Review D 2017; 95: 112003. doi: 10.1103/PhysRevD.95.112003
  • [107] Meissner T. The πNN form-factor from QCD sum rules. Physical Review C 1995; 52: 3386. doi: 10.1103/Phys- RevC.52.3386
  • [108] Maltman K. Higher resonance contamination of πNN couplings obtained via the three point function method in QCD sum rules. Physical Review C 1998; 57: 69. doi: 10.1103/PhysRevC.57.69
  • [109] Bracco ME, Cerqueira A, Chiapparini JM, Lozea A, Nielsen M. D ∗ DsK and D ∗ sDK vertices in a QCD Sum Rule approach. Physics Letters B 2006; 641: 286. doi: 10.1016/j.physletb.2006.08.058
  • [110] Cerqueira A, Osorio Rodrigues B, Bracco ME, Nielsen M. BsB ∗ K and BsBK ∗ vertices using QCD sum rules. Nuclear Physics A 2015; 936: 45. doi: 10.1016/j.nuclphysa.2015.01.007
  • [111] Liu X, Luo ZG, Liu YR, Zhu SL. X(3872) and Other Possible Heavy Molecular States. European Physical Journal C 2009; 61: 411. doi: 10.1140/epjc/s10052-009-1020-4
  • [112] Wang ZG. Analysis of the Y(4140) with QCD sum rules. European Physical Journal C 2009; 63: 115. doi: 10.1140/epjc/s10052-009-1097-9
  • [113] Albuquerque RM, Bracco ME, Nielsen M. A QCD sum rule calculation for the Y(4140) narrow structure. Physics Letters B 2009; 678: 186. doi: 10.1016/j.physletb.2009.06.022
  • [114] Wang ZG, Liu ZC, Zhang XH. Analysis of the Y(4140) and related molecular states with QCD sum rules. European Physical Journal C 2009; 64: 373. doi: 10.1140/epjc/s10052-009-1156-2
  • [115] Wang ZG. Analysis of the Y(4274) with QCD sum rules. International Journal of Modern Physics A 2011; 26: 4929. doi: 10.1142/S0217751X1105484X
  • [116] Liu X, Luo ZG, Zhu SL. Novel charmonium-like structures in the J/ψϕ and J/ψω invariant mass spectra. Physics Letters B 2011; 699: 341. [Erratum: Physics Letters B 2012; 707: 577. doi: 10.1016/j.physletb.2011.04.024]. doi: 10.1016/j.physletb.2011.12.019
  • [117] He J, Liu X. The open-charm radiative and pionic decays of molecular charmonium Y(4274). European Physical Journal C 2012; 72: 1986. doi: 10.1140/epjc/s10052-012-1986-1
  • [118] Finazzo SI, Nielsen M, Liu X. QCD sum rule calculation for the charmonium-like structures in the J/ψϕ and J/ψω invariant mass spectra. Physics Letters B 2011; 701: 101. doi: 10.1016/j.physletb.2011.05.042
  • [119] Hidalgo-Duque C, Nieves J, Valderrama MP. Light flavor and heavy quark spin symmetry in heavy meson molecules. Physical Review D 2013; 87: 076006. doi: 10.1103/PhysRevD.87.076006
  • [120] Stancu F. Can Y(4140) be a c¯cs¯s tetraquark? Journal of Physics G 2010; 37: 075017. doi: 10.1088/0954- 3899/37/7/075017
  • [121] Patel S, Shah M, Vinodkumar PC. Mass spectra of four-quark states in the hidden charm sector. European Physical Journal A 2014; 50: 131. doi: 10.1140/epja/i2014-14131-9
  • [122] Molina R, Oset E. The Y(3940), Z(3930) and the X(4160) as dynamically generated resonances from the vectorvector interaction. Physical Review D 2009; 80: 114013. doi: 10.1103/PhysRevD.80.114013
  • [123] Branz T, Molina R, Oset E. Radiative decays of the Y(3940), Z(3930) and the X(4160) as dynamically generated resonances. Physical Review D 2011; 83: 114015. doi: 10.1103/PhysRevD.83.114015
  • [124] Danilkin IV, Simonov YA. Channel coupling in heavy quarkonia: Energy levels, mixing, widths and new states. Physical Review D 2010; 81: 074027. doi: 10.1103/PhysRevD.81.074027
  • [125] Belle Collaboration [Bhardwaj V et al.]. Inclusive and exclusive measurements of B decays to χc1 and χc2 at Belle. Physical Review D 2016; 93: 052016. doi: 10.1103/PhysRevD.93.052016
  • [126] BaBar Collaboration [Aubert B et al.]. Measurement of CP observables in B ± → D0C PK ± decays. Physical Review D 2008; 77: 111102. doi: 10.1103/PhysRevD.77.111102
  • [127] Chen DY. Where are χcJ (3P) ? European Physical Journal C 2016; 76: 671. doi: 10.1140/epjc/s10052-016-4531-9
  • [128] Liu XH. How to understand the underlying structures of X(4140), X(4274), X(4500) and X(4700). Physics Letters B 2017; 766: 117. doi: 10.1016/j.physletb.2017.01.008
  • [129] Chen W, Zhu SL. The Vector and Axial-Vector Charmonium-like States. Physical Review D 2011; 83: 034010. doi: 10.1103/PhysRevD.83.034010
  • [130] Chen HX, Cui EL, Chen W, Liu X, Zhu SL. Understanding the internal structures of the X(4140), X(4274), X(4500) and X(4700). European Physical Journal C 2017; 77: 160. doi: 10.1140/epjc/s10052-017-4737-5
  • [131] Wang ZG. Reanalysis of X(4140) as axial-vector tetraquark state with QCD sum rules. European Physical Journal C 2016; 76: 657. doi: 10.1140/epjc/s10052-016-4515-9
  • [132] Wang ZG. Analysis of the mass and width of the Y (4274) as axialvector molecule-like state. European Physical Journal C 2017; 77: 174. doi: 10.1140/epjc/s10052-017-4751-7
  • [133] Wang ZG. Scalar tetraquark state candidates: X(3915), X(4500) and X(4700). European Physical Journal C 2017; 77: 78. doi: 10.1140/epjc/s10052-017-4640-0
  • [134] Agaev SS, Azizi K, Sundu H. Exploring the resonances X(4140) and X(4274) through their decay channels. Physical Review D 2017; 95: 114003.
  • [135] Belle Collaboration [Abe K et al.]. Observation of a near-threshold omega J/psi mass enhancement in exclusive B → KωJ/psi decays. Physical Review Letters 2005; 94: 182002. doi: 10.1103/PhysRevLett.94.182002
  • [136] Belle Collaboration [Uehara S et al.]. Observation of a charmonium-like enhancement in the γγ → ωJ/psi process. Physical Review Letters 2010; 104: 092001. doi: 10.1103/PhysRevLett.104.092001
  • [137] BaBar Collaboration [Aubert B et al.]. Observation of Y(3940) → J/ψω in B → J/ψωK at BABAR. Physical Review Letters 2008; 101: 082001. doi: 10.1103/PhysRevLett.101.082001
  • [138] Lebed RF, Polosa AD. χc0(3915) As the Lightest c¯cs¯s State. Physical Review D 2016; 93: 094024. doi: 10.1103/PhysRevD.93.094024
  • [139] Stancu F. On the existence of heavy tetraquarks.
  • [140] Maiani L, Polosa AD, Riquer V. Interpretation of Axial Resonances in J/psi-phi at LHCb. Physical Review D 2016; 94: 054026. doi: 10.1103/PhysRevD.94.054026
  • [141] ZhuR. Hidden charm octet tetraquarks from a diquark-antidiquark model. Physical Review D 2016; 94: 054009. doi: 10.1103/PhysRevD.94.054009
  • [142] COMPASS Collaboration [Adolph C et al.]. Observation of a New Narrow Axial-Vector Meson a1 (1420) Physical Review Letters 2015; 115: 082001. doi: 10.1103/PhysRevLett.115.082001
  • [143] Weinstein JD, Isgur N. K ¯K Molecules. Physical Review D 1990; 41: 2236. doi: 10.1103/PhysRevD.41.2236
  • [144] Alford MG, Jaffe RL. Insight into the scalar mesons from a lattice calculation. Nuclear Physics B 2000; 578: 367. doi: 10.1016/S0550-3213(00)00155-3
  • [145] Amsler C, Tornqvist NA. Mesons beyond the naive quark model. Physics Reports 2004; 389: 61. doi: 10.1016/j.physrep.2003.09.003
  • [146] Bugg DV. Four sorts of meson. Physics Reports 2004; 397: 257. doi: 10.1016/j.physrep.2004.03.008
  • [147] Maiani L, Piccinini F, Polosa AD, Riquer V. A New look at scalar mesons. Physical Review Letters 2004; 93: 212002. doi: 10.1103/PhysRevLett.93.212002
  • [148] ’t Hooft G, Isidori G, Maiani L, Polosa AD. V. Riquer, A Theory of Scalar Mesons. Physics Letters B 2008; 662: 424. doi: 10.1016/j.physletb.2008.03.036
  • [149] Latorre JI, Pascual P. QCD Sum Rules and the ¯qq¯qq System. Journal of Physics G 1985; 11: L231. doi: 10.1088/0305-4616/11/12/001
  • [150] Narison S. On the Two Photon Width of the Delta (980). Physics Letters B 1986; 175: 88. doi: 10.1016/0370- 2693(86)90337-0
  • [151] Brito TV, Navarra FS, Nielsen M, Bracco ME. QCD sum rule approach for the light scalar mesons as four-quark states. Physics Letters B 2005; 608: 69. doi: 10.1016/j.physletb.2005.01.008
  • [152] Wang ZG, Yang WM. Analysis the f0(980) and a0(980) mesons as four-quark states with the QCD sum rules. European Physical Journal C 2005; 42: 89. doi: 10.1140/epjc/s2005-02263-4
  • [153] Chen HX, Hosaka A, Zhu SL. Light Scalar Tetraquark Mesons in the QCD Sum Rule. Physical Review D 2007; 76: 094025. doi: 10.1103/PhysRevD.76.094025
  • [154] Lee HJ. A QCD sum rule study of the light scalar meson. European Physical Journal A 2006; 30: 423. doi: 10.1140/epja/i2006-10104-y
  • [155] Sugiyama J, Nakamura T, Ishii N, Nishikawa T, Oka M. Mixings of 4-quark components in light non-singlet scalar mesons in QCD sum rules. Physical Review D 2007; 76: 114010. doi: 10.1103/PhysRevD.76.114010
  • [156] Kojo T, Jido D. Sigma meson in pole-dominated QCD sum rules. Physical Review D 2008; 78: 114005. doi: 10.1103/PhysRevD.78.114005
  • [157] Wang ZG. Analysis of the scalar nonet mesons with QCD sum rules. European Physical Journal C 2016; 76: 427. doi: 10.1140/epjc/s10052-016-4262-y
  • [158] Achasov NN. Fate of Light Scalar Mesons, arXiv:2002.01354.
  • [159] Wang ZG. Light axial-vector tetraquark state candidate: a1(1420). arXiv:1401.1134.
  • [160] Chen HX, Cui EL, Chen W, Steele TG, Liu X et al. a1(1420) resonance as a tetraquark state and its isospin partner. Physical Review D 2015; 91: 094022. doi: 10.1103/PhysRevD.91.094022
  • [161] Sundu H, Agaev SS, Azizi K. New α1 (1420) state: Structure, mass, and width. Physical Review D 2018; 97: 054001. doi: 10.1103/PhysRevD.97.054001
  • [162] Gutsche T, Lyubovitskij VE, Schmidt I. Tetraquarks in holographic QCD. Physical Review D 2017; 96: 034030. doi: 10.1103/PhysRevD.96.034030
  • [163] Mikhasenko M, Ketzer B, Sarantsev A. Nature of the a1(1420). Physical Review D 2015; 91: 094015. doi: 10.1103/PhysRevD.91.094015
  • [164] Liu XH, Oka M, Zhao Q. Searching for observable effects induced by anomalous triangle singularities. Physics Letters B 2016; 753: 297. doi: 10.1016/j.physletb.2015.12.027
  • [165] Aceti F, Dai LR, Oset E. a1(1420) peak as the πf0(980) decay mode of the a1(1260). Physical Review D 2016; 94: 096015. doi: 10.1103/PhysRevD.94.096015
  • [166] Basdevant, JL Berger EL. Peak locations and relative phase of different decay modes of the a1 axial vector resonance in diffractive production. Physical Review Letters 2015; 114: 192001. doi: 10.1103/PhysRevLett.114.192001
  • [167] Wang W, Zhao ZX. Production of a1 in heavy meson decays. European Physical Journal C 2016; 76: 59. doi: 10.1140/epjc/s10052-016-3900-8
  • [168] Gutsche T, Ivanov MA, . Körner JG, Lyubovitskij VE, Xu K. Test of the multi-quark structure of a1(1420) in strong two-body decays. Physical Review D 2017; 96: 114004.
  • [169] Braun VM, Filyanov IE. Conformal Invariance and Pion Wave Functions of Nonleading Twist. Zeitschrift für Physik C 1990; 48: 239. doi: 10.1007/BF01554472
  • [170] Ball P. Theoretical update of pseudoscalar meson distribution amplitudes of higher twist: The Nonsinglet case. JHEP 1999; 9901: 010. doi: 10.1088/1126-6708/1999/01/010
  • [171] Agaev SS, Braun VM, Offen N, Porkert FA. Light Cone Sum Rules for the π0γ ∗ γ Form Factor Revisited. Physical Review D 2011; 83: 054020. doi: 10.1103/PhysRevD.83.054020
  • [172] Agaev SS, Braun VM, Offen N, Porkert FA. BELLE Data on the π0γ ∗ γ Form Factor: A Game Changer? Physical Review D 2012; 86: 077504. doi: 10.1103/PhysRevD.86.077504
  • [173] Braun VM, Collins S, Göckeler M, Perez-Rubio P, Schäfer A et al. Second Moment of the Pion Light-cone Distribution Amplitude from Lattice QCD. Physical Review D 2015; 92: 014504. doi: 10.1103/PhysRevD.92.014504
  • 174] Ding GJ, Zhu JJ, Yan ML. Canonical Charmonium Interpretation for Y(4360) and Y(4660). Physical Review D 2008; 77: 014033. doi: 10.1103/PhysRevD.77.014033
  • [175] Li BQ, Chao KT. Higher Charmonia and X,Y,Z states with Screened Potential. Physical Review D 2009; 79: 094004. doi: 10.1103/PhysRevD.79.094004
  • [176] Guo FK, Hanhart C, Meissner UG. Evidence that the Y(4660) is a f0(980)ψ ′ bound state. Physics Letters B 2008; 665: 26. doi: 10.1016/j.physletb.2008.05.057
  • [177] Wang ZG, Zhang XH. Analysis of Y(4660) and related bound states with QCD sum rules. Communications in Theoretical Physics 2010; 54: 323. doi: 10.1088/0253-6102/54/2/23
  • [178] Albuquerque RM, Nielsen M, Rodrigue da Silva R. Exotic 1 −− States in QCD Sum Rules. Physical Review D 2011; 84: 116004. doi: 10.1103/PhysRevD.84.116004
  • [179] Qiao CF. A Uniform description of the states recently observed at B-factories. Journal of Physics G 2008; 35: 075008. doi: 10.1088/0954-3899/35/7/075008
  • [180] Cotugno G, Faccini R, Polosa AD. C. Sabelli, Charmed Baryonium. Physical Review Letters 2010; 104: 132005. doi: 10.1103/PhysRevLett.104.132005
  • [181] Zhang JR, Huang MQ. The P -wave [cs][¯c¯s] tetraquark state: Y (4260) or Y (4660)? Physical Review D 2011; 83: 036005. doi: 10.1103/PhysRevD.83.036005
  • [182] Albuquerque RM, Nielsen M. QCD sum rules study of the JPC = 1 −− charmonium Y mesons. Nuclear Physics A 2009; 815: 53. [Erratum: Nuclear Physics A 2011; 857: 48. dpi: 10.1016/j.nuclphysa.2008.10.015]. doi: 10.1016/j.nuclphysa.2011.04.001
  • [183] Wang ZG. Analysis of the Zc(4020), Zc(4025), Y (4360) and Y (4660) as vector tetraquark states with QCD sum rules. European Physical Journal C 2014; 74: 2874. doi: 10.1140/epjc/s10052-014-2874-7
  • [184] Wang ZG. Tetraquark state candidates: Y (4260), Y (4360), Y (4660) and Zc(4020/4025). European Physical Journal C 2016; 76: 387. doi: 10.1140/epjc/s10052-016-4238-y
  • [185] Wang ZG. Vector tetraquark state candidates: Y (4260/4220), Y (4360/4320), Y (4390) and Y (4660/4630). European Physical Journal C 2018; 78: 518. doi:10.1140/epjc/s10052-018-5996-5
  • [186] Sundu H, Agaev SS, Azizi K. Resonance Y (4660) as a vector tetraquark and its strong decay channels. Physical Review D 2018; 98: 054021. doi: 10.1103/PhysRevD.98.054021
  • [187] BaBar Collaboration [Aubert B et al.]. A Structure at 2175-MeV in e+e − → ϕf0(980) Observed via Initial-State Radiation. Physical Review D 2006; 74: 091103. doi: 10.1103/PhysRevD.74.091103
  • [188] BES Collaboration [Ablikim M et al.]. Observation of Y(2175) in J/ψ → ηϕf0(980). Physical Review Letters 2008; 100: 102003. doi: 10.1103/PhysRevLett.100.102003
  • [189] Belle Collaboration [Shen CP et al.]. Observation of the phi(1680) and the Y(2175) in e+e − → ϕπ+π − . Physical Review D 2009; 80: 031101. doi: 10.1103/PhysRevD.80.031101
  • [190] BESIII Collaboration [Ablikim M et al.]. Study of J/ψ → ηϕπ+π − at BESIII. Physical Review D 2015; 91: 052017. doi: 10.1103/PhysRevD.91.052017
  • [191] BESIII Collaboration [Ablikim M et al.]. Measurement of e+e − → K+K − cross section at √ s = 2.00−3.08 GeV. Physical Review D 2019; 99: 032001. doi: 10.1103/PhysRevD.99.032001
  • [192] BESIII Collaboration [Ablikim M et al.]. Observation and study of J/ψ → ϕηη ′ at BESIII. Physical Review D 2019; 99: 112008.
  • [193] Ding GJ, Yan ML. Y(2175): Distinguish Hybrid State from Higher Quarkonium. Physics Letters B 2007; 657: 49. doi: 10.1016/j.physletb.2007.10.020
  • [194] Wang X, Sun ZF, Chen DY, Liu X, Matsuki T. Non-strange partner of strangeonium-like state Y(2175). Physical Review D 2012; 85: 074024. doi: 10.1103/PhysRevD.85.074024
  • [195] Martinez Torres A, Khemchandani KP, Geng LS, Napsuciale M, Oset E. The X(2175) as a resonant state of the phi K anti-K system. Physical Review D 2008; 78: 074031. doi: 10.1103/PhysRevD.78.074031
  • [196] Alvarez-Ruso L, Oller JA, Alarcon JM. On the ϕ(1020)f0(980) S-wave scattering and the Y(2175) resonance. Physical Review D 2009; 80: 054011. doi: 10.1103/PhysRevD.80.054011
  • [197] Wang ZG. Analysis of the Y(2175) as a tetraquark state with QCD sum rules. Nuclear Physics A 2007; 791: 106. doi: 10.1016/j.nuclphysa.2007.04.012
  • [198] Chen HX, Liu X, Hosaka A, Zhu SL. The Y(2175) State in the QCD Sum Rule. Physical Review D 2008; 78: 034012. doi: 10.1103/PhysRevD.78.034012
  • [199] Chen HX, Shen CP, Zhu SL. A possible partner state of the Y (2175). Physical Review D 2018; 98: 014011. doi: 10.1103/PhysRevD.98.014011
  • [200] Agaev SS, Azizi K, Sundu H. Nature of the vector resonance Y (2175). Physical Review D 2020; 101: 074012.
  • [201] Lu QF, Wang KL, Dong YB. The ss¯s¯s tetraquark states and the newly observed structure X(2239) by BESIII Collaboration. arXiv:1903.05007.
  • [202] Cui EL, Yang HM, Chen HX, Chen W, Shen CP. QCD sum rule studies of ss¯s¯s tetraquark states with JPC = 1+− . European Physical Journal C 2019; 79: 232. doi: 10.1140/epjc/s10052-019-6755-y
  • [203] Wang ZG. Light tetraquark state candidates. arXiv:1901.04815.
  • [204] Wang LM, Luo SQ, Liu X. X(2100) newly observed in J/ψ → ϕηη ′ at BESIII as an isoscalar axial-vector meson. arXiv:1901.00636.
  • [205] Azizi K, Agaev SS, Sundu H. Light axial-vector and vector resonances X(2100) and X(2239). Nuclear Physics B 2019; 948: 114789. doi: 10.1016/j.nuclphysb.2019.114789
  • [206] Agaev SS, Braun VM, Offen N, Porkert FA, Schäfer A. Transition form factors γ ∗ γ → η and γ ∗ γ → η ′ in QCD. Physical Review D 2014; 90: 074019. doi: 10.1103/PhysRevD.90.074019
  • [207] Agaev SS, Azizi K, Sundu H. Strong D ∗ sDsη(′) and B ∗ sBsη(′) vertices from QCD light-cone sum rules. Physical Review D 2015; 92: 116010. doi: 10.1103/PhysRevD.92.116010
  • [208] Agaev SS, Azizi K, Sundu H. Open charm-bottom scalar tetraquarks and their strong decays. Physical Review D 2017; 95: 034008. doi: 10.1103/PhysRevD.95.034008
  • [209] Ball P, Braun VM. The Rho meson light cone distribution amplitudes of leading twist revisited. Physical Review D 1996; 54: 2182. doi: 10.1103/PhysRevD.54.2182
  • [210] Ball P, Braun VM, Koike Y, Tanaka K. Higher twist distribution amplitudes of vector mesons in QCD: Formalism and twist - three distributions. Nuclear Physics B 1998; 529: 323. doi: 10.1016/S0550-3213(98)00356-3
  • [211] Ball P, Jones GW. Twist-3 distribution amplitudes of K* and phi mesons. JHEP 2007; 0703: 069. doi: 10.1088/1126- 6708/2007/03/069.
  • [212] Agaev SS, Azizi K, Sundu H. Mass and decay constant of the newly observed exotic X(5568) state. Physical Review D 2016; 93: 074024. doi: 10.1103/PhysRevD.93.074024
  • [213] Agaev SS, Azizi K, Sundu H. Width of the exotic Xb(5568) state through its strong decay to B0 sπ+ . Physical Review D 2016; 93: 114007. doi: 10.1103/PhysRevD.93.114007
  • [214] Agaev SS, Azizi K, Sundu H. Charmed partner of the exotic X(5568) state and its properties. Physical Review D 2016; 93: 094006. doi: 10.1103/PhysRevD.93.094006
  • [215] Agaev SS, Azizi K, Sundu H. Exploring X(5568) as a meson molecule. European Physical Journal Plus 2016; 131: 351. doi: 10.1140/epjp/i2016-16351-8
  • [216] Navarra FS, Nielsen M, Lee SH. QCD sum rules study of QQ¯u ¯ d mesons. Physics Letters B 2007; 649: 166. doi: 10.1016/j.physletb.2007.04.010
  • [217] Karliner M, Rosner JL. Discovery of doubly-charmed Ξcc baryon implies a stable (bb¯u ¯ d) tetraquark. Physical Review Letters 2017; 119: 202001. doi: 10.1103/PhysRevLett.119.202001
  • [218] Eichten EJ, Quigg C. Heavy-quark symmetry implies stable heavy tetraquark mesons QiQj ¯qk ¯ql . Physical Review Letters 2017; 119: 202002. doi: 10.1103/PhysRevLett.119.202002
  • [219] Agaev SS, Azizi K, Barsbay B, Sundu H. Weak decays of the axial-vector tetraquark T − bb;¯u ¯ d . Physical Review D 2019; 99: 033002. doi: 10.1103/PhysRevD.99.033002
  • [220] Sundu H, Agaev SS, Azizi K. Semileptonic decays of the scalar tetraquark Z0 bc;ud . European Physical Journal C 2019; 79: 753. doi: 10.1140/epjc/s10052-019-7268-4
  • [221] Agaev SS, Azizi K, Sundu H. Decay modes of the scalar exotic meson T −bs;ud . Physical Review D 2019; 100: 094020. doi: 10.1103/PhysRevD.100.094020
  • [222] Agaev SS, Azizi K, Barsbay B, Sundu H. Heavy exotic scalar meson T −bb;¯u¯s . arXiv:1912.07656.
  • [223] Agaev SS, Azizi K, Barsbay B, Sundu H. Stable scalar tetraquark T −bb;¯u ¯ d . arXiv:2001.01446.
APA AGAEV S, AZİZİ K, SUNDU H (2020). Four-quark exotic mesons. , 95 - 173. 10.3906/fiz-2003-15
Chicago AGAEV Shahin,AZİZİ Kazem,SUNDU Hayriye Four-quark exotic mesons. (2020): 95 - 173. 10.3906/fiz-2003-15
MLA AGAEV Shahin,AZİZİ Kazem,SUNDU Hayriye Four-quark exotic mesons. , 2020, ss.95 - 173. 10.3906/fiz-2003-15
AMA AGAEV S,AZİZİ K,SUNDU H Four-quark exotic mesons. . 2020; 95 - 173. 10.3906/fiz-2003-15
Vancouver AGAEV S,AZİZİ K,SUNDU H Four-quark exotic mesons. . 2020; 95 - 173. 10.3906/fiz-2003-15
IEEE AGAEV S,AZİZİ K,SUNDU H "Four-quark exotic mesons." , ss.95 - 173, 2020. 10.3906/fiz-2003-15
ISNAD AGAEV, Shahin vd. "Four-quark exotic mesons". (2020), 95-173. https://doi.org/10.3906/fiz-2003-15
APA AGAEV S, AZİZİ K, SUNDU H (2020). Four-quark exotic mesons. Turkish Journal of Physics, 44(2), 95 - 173. 10.3906/fiz-2003-15
Chicago AGAEV Shahin,AZİZİ Kazem,SUNDU Hayriye Four-quark exotic mesons. Turkish Journal of Physics 44, no.2 (2020): 95 - 173. 10.3906/fiz-2003-15
MLA AGAEV Shahin,AZİZİ Kazem,SUNDU Hayriye Four-quark exotic mesons. Turkish Journal of Physics, vol.44, no.2, 2020, ss.95 - 173. 10.3906/fiz-2003-15
AMA AGAEV S,AZİZİ K,SUNDU H Four-quark exotic mesons. Turkish Journal of Physics. 2020; 44(2): 95 - 173. 10.3906/fiz-2003-15
Vancouver AGAEV S,AZİZİ K,SUNDU H Four-quark exotic mesons. Turkish Journal of Physics. 2020; 44(2): 95 - 173. 10.3906/fiz-2003-15
IEEE AGAEV S,AZİZİ K,SUNDU H "Four-quark exotic mesons." Turkish Journal of Physics, 44, ss.95 - 173, 2020. 10.3906/fiz-2003-15
ISNAD AGAEV, Shahin vd. "Four-quark exotic mesons". Turkish Journal of Physics 44/2 (2020), 95-173. https://doi.org/10.3906/fiz-2003-15