Yıl: 2019 Cilt: 43 Sayı: 2 Sayfa Aralığı: 795 - 812 Metin Dili: İngilizce DOI: 10.3906/mat-1805-113

On the number of k-normal elements over finite fields

Öz:
In this article we give an explicit formula for the number of k -normal elements, hence answering Problem6.1. of Huczynska et al. (Existence and properties of k -normal elements over finite fields, Finite Fields Appl 2013;24: 170-183). Furthermore, for some cases we provide formulas that require the solutions of some linear Diophantineequations. Our results depend on the explicit factorization of cyclotomic polynomials.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Blake IF, Gao S, Mullin RC. Explicit factorization of x2k + 1 over Fp with prime p  3 (mod 4). Appl Algebra Eng Commun Comput 1993; 4: 89-94.
  • [2] Bosma W, Cannon J, Playoust C. The Magma algebra system. I. The user language. J Symb Comput 1997; 24: 235-265.
  • [3] Chen B, Li L, Tuerhong R. Explicit factorization of x2mpn 􀀀 1 over a finite field. Finite Fields Appl 2013; 24: 95-104.
  • [4] Dahab R, Hankerson D, Hu F, Long M, López J, Menezes A. Software multiplication using gaussian normal bases. IEEE T Comput 2006; 55: 974-984.
  • [5] Devi OR, Chanu TR. Explicit factorization of cyclotomic polynomials over finite fields. Int J Pure Appl Math 2013; 86: 585-592.
  • [6] Fitzgerald RW, Yucas JL. Explicit factorizations of cyclotomic and dickson polynomials over finite fields. In: International Workshop on the Arithmetic of Finite Fields, 2007.
  • [7] Huczynska S, Mullen GL, Panario D, Thomson D. Existence and properties of k -normal elements over finite fields. Finite Fields Appl 2013; 24: 170-183.
  • [8] Kızılkale C, Eğecioğlu Ö, Koç Ç. A matrix decomposition method for optimal normal basis multiplication. IEEE T Comput 2016; 65: 3239-3250.
  • [9] Lidl R, Niederreiter H. Finite Fields. 2nd ed. Cambridge, UK: Cambridge University Press, 1997.
  • [10] Meyn H. Factorization of the cyclotomic polynomial x2n +1 over finite fields. Finite Fields Appl 1996; 2: 439-442.
  • [11] Mullin RC, Onyszchuk IM, Vanstone SA, Wilson RM. Optimal normal bases in GF(pn) . Discrete Appl Math 1989; 22: 149-161.
  • [12] Negre C. Finite field arithmetic using quasi-normal bases. Finite Fields Appl 2007; 13: 635-647.
  • [13] Reis L. Existence results on k -normal elements over finite fields. arXiv:1612.05931v3, 2018.
  • [14] Reyhani-Masoleh A. Efficient algorithms and architectures for field multiplication using gaussian normal bases. IEEE T Comput 2006; 55: 34-47.
  • [15] Tuxanidy A, Wang Q. Composed products and factors of cyclotomic polynomials over finite fields. Des Codes Cryptogr 2013; 69: 203-231.
  • [16] Wang L, Wang Q. On explicit factors of cyclotomic polynomials over finite fields. Des Codes Cryptogr 2012; 63: 87-104.
  • [17] Wu H, Zhu L, Feng R, Yang S. Explicit factorizations of cyclotomic polynomials over finite fields. Des Codes Cryptogr 2017: 83: 197-217.
APA SAYGI Z, TILENBAEV E, ÜRTİŞ Ç (2019). On the number of k-normal elements over finite fields. , 795 - 812. 10.3906/mat-1805-113
Chicago SAYGI Zülfükar,TILENBAEV Ernist,ÜRTİŞ Çetin On the number of k-normal elements over finite fields. (2019): 795 - 812. 10.3906/mat-1805-113
MLA SAYGI Zülfükar,TILENBAEV Ernist,ÜRTİŞ Çetin On the number of k-normal elements over finite fields. , 2019, ss.795 - 812. 10.3906/mat-1805-113
AMA SAYGI Z,TILENBAEV E,ÜRTİŞ Ç On the number of k-normal elements over finite fields. . 2019; 795 - 812. 10.3906/mat-1805-113
Vancouver SAYGI Z,TILENBAEV E,ÜRTİŞ Ç On the number of k-normal elements over finite fields. . 2019; 795 - 812. 10.3906/mat-1805-113
IEEE SAYGI Z,TILENBAEV E,ÜRTİŞ Ç "On the number of k-normal elements over finite fields." , ss.795 - 812, 2019. 10.3906/mat-1805-113
ISNAD SAYGI, Zülfükar vd. "On the number of k-normal elements over finite fields". (2019), 795-812. https://doi.org/10.3906/mat-1805-113
APA SAYGI Z, TILENBAEV E, ÜRTİŞ Ç (2019). On the number of k-normal elements over finite fields. Turkish Journal of Mathematics, 43(2), 795 - 812. 10.3906/mat-1805-113
Chicago SAYGI Zülfükar,TILENBAEV Ernist,ÜRTİŞ Çetin On the number of k-normal elements over finite fields. Turkish Journal of Mathematics 43, no.2 (2019): 795 - 812. 10.3906/mat-1805-113
MLA SAYGI Zülfükar,TILENBAEV Ernist,ÜRTİŞ Çetin On the number of k-normal elements over finite fields. Turkish Journal of Mathematics, vol.43, no.2, 2019, ss.795 - 812. 10.3906/mat-1805-113
AMA SAYGI Z,TILENBAEV E,ÜRTİŞ Ç On the number of k-normal elements over finite fields. Turkish Journal of Mathematics. 2019; 43(2): 795 - 812. 10.3906/mat-1805-113
Vancouver SAYGI Z,TILENBAEV E,ÜRTİŞ Ç On the number of k-normal elements over finite fields. Turkish Journal of Mathematics. 2019; 43(2): 795 - 812. 10.3906/mat-1805-113
IEEE SAYGI Z,TILENBAEV E,ÜRTİŞ Ç "On the number of k-normal elements over finite fields." Turkish Journal of Mathematics, 43, ss.795 - 812, 2019. 10.3906/mat-1805-113
ISNAD SAYGI, Zülfükar vd. "On the number of k-normal elements over finite fields". Turkish Journal of Mathematics 43/2 (2019), 795-812. https://doi.org/10.3906/mat-1805-113